生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì)_第1頁(yè)
生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì)_第2頁(yè)
生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì)_第3頁(yè)
生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì)_第4頁(yè)
生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩74頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、生物測(cè)定的統(tǒng)計(jì)基礎(chǔ)及試驗(yàn)設(shè)計(jì),對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析, 指導(dǎo)試驗(yàn)的設(shè)計(jì)。只有在生物統(tǒng)計(jì)理論指導(dǎo)下制定的試驗(yàn)方案, 才能消耗最少的人力、物力和時(shí)間, 獲得最多有用的數(shù)據(jù)。 在應(yīng)用生物統(tǒng)計(jì)工具對(duì)試驗(yàn)結(jié)果分析時(shí), 我們必須結(jié)合專業(yè)知識(shí), 選用適當(dāng)?shù)哪P蛠?lái)分析, 在不了解生物現(xiàn)象的情況下, 機(jī)械地套用有可能得出錯(cuò)誤的結(jié)論。,概率分布,反應(yīng)-劑量對(duì)數(shù)的概率分布曲線,G = 1/(2) e*(-(x-)2/22),:為中數(shù)或均數(shù), 是分布的中心, 決定了曲線在橫坐標(biāo)上的位置,在概率分布曲線中, 它表示有效中量(median effective dose, ED50)的對(duì)數(shù)值 2: 方差, 它代表了分布的離散度

2、, 2大, 分布曲線低而寬, 2小, 分布曲線高而窄。低而寬的反應(yīng)-劑量分布曲線表明生物群體中個(gè)體之間對(duì)藥劑的忍受能力差異大, 高而窄的曲線則表明生物群體中個(gè)體之間對(duì)藥劑的忍受能力差異小。,試驗(yàn)的精密度,試驗(yàn)誤差experimental error 一個(gè)試驗(yàn)的試驗(yàn)誤差大小說(shuō)明了該試驗(yàn)的精密程度如何。試驗(yàn)的精密度(precision)是表示試驗(yàn)結(jié)果的可重復(fù)性。 試驗(yàn)誤差可能由供試生物個(gè)體間的差異 操作上的不一致造成的, 由一些未被試驗(yàn)人員所察覺的隨機(jī)誤差所引起的。 除了選用一致的生物個(gè)體作試驗(yàn)材料、保持試驗(yàn)條件的穩(wěn)定、規(guī)范試驗(yàn)操作可減少試驗(yàn)誤差外, 選擇適當(dāng)?shù)脑囼?yàn)設(shè)計(jì)也可減少試驗(yàn)誤差。,精密度S

3、2(y)的表示方法,S2(y) = S2/n 其中,S2 (y) 表示處理平均數(shù)的方差,S2表示樣本方差,n表示觀察值的個(gè)數(shù)。 S2 試驗(yàn)設(shè)計(jì)和試驗(yàn)材料差異 N 試驗(yàn)單元的大小和數(shù)量,提高試驗(yàn)的精密度途徑,減小S2 ,即是降低樣本的方差 選擇適合的試驗(yàn)設(shè)計(jì) 差異較小的試驗(yàn)材料 增加n,即是增加試驗(yàn)單元(experimental unit)大小和數(shù)量,試驗(yàn)單元(experimental unit),某一處理在某一重復(fù)中的試驗(yàn)材料的總和 一盆種一株植物 一盆種十株植物 一個(gè)培養(yǎng)皿中裝十粒種子 一個(gè)培養(yǎng)皿中裝一百粒種子,在不同的試驗(yàn)單元間存在著固有的差異 在同一試驗(yàn)單元中的不同個(gè)體的表現(xiàn)趨于一致 不

4、能把試驗(yàn)單元中的不同個(gè)體當(dāng)成重復(fù),試驗(yàn)設(shè)計(jì),無(wú)重復(fù)的試驗(yàn) 擴(kuò)展試驗(yàn)設(shè)計(jì)(augmented design) 單因子試驗(yàn) 多因子試驗(yàn),劑量反應(yīng)曲線及其模型,分為質(zhì)反應(yīng)(quantal response) 量反應(yīng)(quantitative response),質(zhì)反應(yīng)曲線,When =1, =0,zi p = 1/(22)exp( -1/2 Z2 )dz -,xi p = 1/(22)exp( -1/2 (x - )2 /2)dx -,直線化變換,Probit tranformation Z = 1/ (x - ) Y = Z + 5 = 1/ (x - ) + 5 = - 1/ + 5 + 1/

5、x 在標(biāo)準(zhǔn)正態(tài)偏離上加5是為了使所有的機(jī)率值為正數(shù)。因?yàn)? 在反應(yīng)率p等于50%, Z為0, 反應(yīng)率小于50%時(shí), Z為負(fù)值。如當(dāng)反應(yīng)率等于25.87%, Z為-1; 反應(yīng)率等于2.28%時(shí), Z為-2. 將Z加上5后, 在任何反應(yīng)率下, 機(jī)率值均為正數(shù),Dose response curve,Dose-response model,模型的檢驗(yàn),直線化變換,移項(xiàng)得 (D - C)/(y - C) - 1 = (x/x0) b 兩邊同時(shí)取對(duì)數(shù)得 log(D - y)/(y-C) = b(logx - logx0) 令v = log(D - y)/(y-C), 則 v = b(logx - log

6、x0) (2.12),Herbicide Bioassay,Relative potency,The relative potency (RP) of Herbicide A with respect to Herbicide B is defined as: RP (A/B) = ED50(compound )/ED50(compoud B),Parallel,Quantal response Y1 = a1 + b1X1 Y2 = a1 + b2X2,dose,response,t test,whether the two line are parallel or not If not s

7、ignificant, then b1 = b2 and two lines are parallel,Pooled residual mean square (S2p) = (n1 - 2)S2b1 + (n2 - 2) S2b2/(n1 + n2 - 4) Where: S2b1is residual mean square for the 1st set of data ; S2b2 is residual mean square for the 2nd set of data.,Combined slope (bc):,Quantitative response (four-param

8、eter model),F test,First, suppose b1 = b2, ED501 = ED502, and run the model I Then suppose b1 b2, ED501= ED502, and run the model II (SSII - SSI)/(dfII - dfI) F = SSI/dfI where SSII is error sum of square of Model II; SSI is error sum of square of Model I If not significant, then b1 = b2 and two cur

9、ves are parallel.,Parallel curves:,Two compounds having the same action mode; Different formulations of a compound; One compound with different adjuvants,Non-parallel,Slope (b) - not constant for tested compounds. Compare relative potency of two compounds effectively only under a certain equivalent

10、effective dose.,Vertical vs horizontal assessments,Vertical assessment Compare plant responses at preset doses. Horizontal assessment Compare the doses of two or more compounds that produce a similar plant response.,Cautions with the parallel-line dose-response theory,a. Not parallel in field condit

11、ions b. Work less well with herbicides having complex or multiple modes of action. c. Maybe work less well with different plant species. d. Maybe doesnt work with different growth stages.,Screening procedures,a. Primary screen b. Secondary screen c. Field screen and physiological and biochemical sel

12、ectivity studies d. Advanced selectivity screen e. Field evaluation,Expressing selectivity,a. Vertical assessment b. Selectivity indices (SI) SI = ED50 (species A) / ED50 (species B) SI = ED10 (crop) / ED90 (weed) SI 2 Good selectivity SI 1- 2 Marginal selectivity SI 1 Non Selectivity,Be careful whe

13、n using the criteria,1. ED10 may significantly reduce crop yields. 2. The limitations of bioassay in the prediction of field response a. Temperature b. Day length, light quality, irradiance c. Wind effects d. Plant growth stage e. Soil conditions 3. Overlap of sprayed areas 4. Apply higher dose than

14、 recommended dose,No-observable-effect level (NOEL) and No-effect level (NEL),Determination of NOEL a. Multiple comparison test Effect of expt. design More replications, more precision. Disadvantage: Different responses Different slopes b. Dose-response relationshi,Problems in determining the NOEL,a

15、. Stimulation b. Effect of expt. design and response variable c. Duration of exposure,Parameters used in herbicide bioassay,Biomass including fresh weight and dry weight Mortality Plant height Physiological parameters,INTERACTION BETWEEN HERBICIDES,Response Factor A at level 1 Factor A at level 1 Fa

16、ctor B,INTERACTION BETWEEN HERBICIDES,Response Factor A at level 1 Factor A at level 1 Factor B,Herbicide mixtures,Reasons for using herbicide mixtures: Widen the spectrum of weeds controlled Reduce costs of weed control Reduce herbicide use Reduce number of sprayings Prevent/overcome resistance,Her

17、bicide mixtures,Additivity The performance of a mixture is as predicted by a reference model Antagonism The performance of a mixture is poorer than predicted by a reference model Synergism The performance of a mixture is better than predicted by a reference model,Antagonism,Reduced uptake and/or tra

18、nslocation of a herbicide or an increased metabolism of a herbicide (biochemical antagonism) PS II inhibitors + glyphosate dinitroanilines + PS II inhibitors ”fops” + auxin herbicides difenzoquat/flamprop-M-isopropyl + auxin herbicides Preventing binding of active ingredient at the site of action (c

19、ompetitive antagonism) Safeners Active and inactive isomers of the herbicide,Antagonism,Opposite physiological effects (physiological antagonism) difenzoquat/flamprop-M-isopropyl + phenoxy herbicides Chemical reaction in the spray solution (chemical antagonism) glyphosate + cations paraquat + MCPA,S

20、ynergism,Increased uptake and/or translocation of a herbicide adjuvants desmedipham + ethofumesate growth regulators + glyphosate/dicamba Reduced metabolism of a herbicide insekticides + herbicides,Herbicide mixtures,Three possible scenarios None of the compounds are active applied alone but applied

21、 in mixture they exert activity (coalitive action),Herbicide mixtures,Three possible scenarios None of the compounds are active applied alone but applied in mixture they exert activity (coalitive action) One compound is active while the other is inactive (herbicide+adjuvant, herbicide+fungicide/inse

22、cticide/ growth regulator) Two compound are active (herbicide+herbicide),Adjuvants,Adjuvants,Dose response curves,Adjuvants,Fluazifop-bytyl + various adjuvants,Sun Spray Plus:R=1.00 0.1% Sandovit:R=1.41 0.3% SandovitR=1.79 1% Atplus 221R=1.84 3% AtplusR=2.34,Herbicide mixtures,Herbicide mixtures,Ref

23、erence models,Effect multiplication also called Multiplikative Survival Model (MSM) Concentration addition also called Additive Dose Model (ADM),Multiplicative Survival Model,QA,B = QA x QB Q is a proportion of the untreated control, i.e. O = 100% control and 1 = no control If P is % effect (from 0

24、to 1) then (1 - PA,B) = (1 - PA) x (1 - PB) or PA,B = PA + PB - PA x PB,Multiplicative Survival Model,Example: 1 kg/ha Herbicide A: 75% effect 1 kg/ha Herbicide B: 80% effect Expected effect of a mixture containing 1 kg/ha of each herbicide according to MSM: P =0.75 + 0.80 - 0.75 x 0.80 P =0.95 i.e.

25、 95% effect,Multiplicative Survival Model,MSM assumes independent action of the herbicides, i.e. the herbicides exert their action independently of each other (=sequential) which seems to be an unrealistic assumption for most herbicide mixtures. MSM has traditionally been considered to be the correc

26、t reference model for mixtures of herbicides with different modes of action.,Additive Dose Model,At a given response level ADM can be expressed as: zA/ZA + zB/ZB = 1 where ZA and ZB are the doses of herbicides A and B applied separately and zA and zB are the doses of the herbicides in a mixture cons

27、isting of zA + zB. The relative potency between herbicides A and B is: R = ZA/ZB The relative potency corresponds to the exchange rate between currencies.,Additive Dose Model,Example: ED50 of Herbicide A: 4 kg/ha ED50 of Herbicide B: 2 kg/ha R = 4/2 = 2 i.e. Herbicide B is twice as active as Herbici

28、de A,Additive Dose Model,Additive Dose Model,ED50 or EDx,ED50 or EDx,Additive Dose Model,Additive Dose Model,Example: Herbicide A: 4 kg/ha Herbicide B: 2 kg/ha Mixture 1 (75% A : 25% B): 3.2 kg/ha 2.4 kg/ha Herbicide A + 0.8 kg/ha Herbicide B 0.6 Herbicide A + 0.4 Herbicide B Mixture 2 (50% A : 50%

29、B): 2.7 kg/ha 1.35 kg/ha Herbicide A + 1.35 kg/ha Herbicide B 0.33 Herbicide A + 0.67 Herbicide B Mixture 3 (25% A : 75% B): 2.3 kg/ha 0.58 kg/ha Herbicide A + 1.72 kg/ha Herbicide B 0.14 Herbicide A + 0.86 Herbicide B,Additive Dose Model,Additive Dose Model,Example: Herbicide A: 4 kg/ha Herbicide B

30、: 2 kg/ha Mixture 1 (75% A : 25% B): 4.4 kg/ha 3.3 kg/ha Herbicide A + 1.1 kg/ha Herbicide B 0.83 Herbicide A + 0.55 Herbicide B Mixture 2 (50% A : 50% B): 3.8 kg/ha 1.9 kg/ha Herbicide A + 1.9 kg/ha Herbicide B 0.48 Herbicide A + 0.95 Herbicide B Mixture 3 (25% A : 75% B): 3.6 kg/ha 0.9 kg/ha Herbicide A + 2.7 kg/ha Herbicide B 0.23 Herbicide A + 1.35 Herbicide B,Additive Dose Model,Additive Dose Model,Example: Herbicide A: 4 kg

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論