已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
編號: 畢業(yè)設計 (論文 )外文翻譯 (譯文) 學 院: 應用科技學院 專 業(yè): 機械設計及其自動化 學生姓名: 學 號: 指導教師單位: 姓 名: 職 稱: 2011 年 6 月 12 日 1 頁 共 29 頁 現代制造技術 簡介 國際競爭 的激勵 和計算機技術應用 的發(fā)展 ,在 1980 年制造企業(yè)一直追求兩個主要的資助方式: *自動化, *集成 化 。 自動化是人類功能的機器替代 ;集成 化是減少或消除實體或組織實體之間的緩沖區(qū)。后 面 的制造企業(yè)應用的新自動化技術策略是多方面的: *為了在 知識工作中解放出人力資源 ; *為 了 避免危險或不愉快的工作 ; *為了提高產品的均勻性 ; *為了降低成本和多變性。 該戰(zhàn)略的實施已經導致公 司在他們的辦公室自動化,工廠和實驗室走簡單,重復的功能。 集成化 ,當作為一種方法來提高質量 、 成本和客戶響應 時 ,要求企業(yè)想方設法降低各函數的物理,時間和組織上的障礙。這種緩沖減少已實施的消除浪費, 替代的庫存信息,計算機技術的插入,或這些的組合。 在大多數加工工業(yè) - 石油精煉,造紙,例如 - 自動化和集成 化有 了數十年的關鍵趨勢。然而,在離散制造產品 - 電子產品和汽車,例如 - 在這些方向重大進展是在美國最近的現象。 本章定義,探討,并闡明了技術支持朝著更加自動化和離散制造一體化應用趨勢的商品。我們首先對已 經發(fā)展的硬件和軟件技術 進行 討論。然后,我們看看六個管理,必須加以解決,以支持這些趨勢的挑戰(zhàn)。最后,我們看看經濟評價新技術的問題。 自動化制造 其 特點,例如,東芝公司,在他們的 OME 工程 設施 中 ,自動化制造,可分為三類: *工廠自動化 *工程自動化 *規(guī)劃和控制的自動化。 在這三個領域自動化可以獨立發(fā)生,但三者之間的協(xié)調,因為這是由東芝公司正在推行設施,下面討論 計算機集成 制造驅動器的機會。 工廠自動化 盡管軟件也起到了關鍵作用, 但 工廠自動化 是通過 用于生產中 的 技術硬件 來典型地描述的 :機器人,數控( NC)機床,自動 化物料處理系統(tǒng) , 越來越多,這些技術被 廣泛應用 ,整合為制造單元或柔性制造系統(tǒng)( FMS)知名的系統(tǒng)。 2 頁 共 29 頁 機器人 這個 術語涉及到一個 自動化 的 設備,通??删幊?的 ,可用搬運材料 到工作臺上 (取放)或組裝 部件 成一個較大的設備。機器人也可以用來代替直接使用工具或設備的人 力 勞動,例如,通過一個噴漆機器人,焊接機器人,這兩個職位的焊工 、 焊接和接縫。 在 復雜 的事物上 機器人 能顯著地改變 ,從簡單的單軸可編程控制器,到 用 微處理器控制和實時閉環(huán)反饋和調整機器 的 復雜的多軸 機器 。 一個數字控制(數控)機床是一臺機器工具, 它 可以 通過 一個指導機器 操作的 計算機程序 來運轉 ,一個獨立的數控機床需要有工件,工具和 NC 程序加載和卸載操作員。然而,一旦數控機床 在 工件上運行一個程序,它需要 的操作明顯 低于 手動 操作 機器所需的操作 。 一個 CNC 機床通常有一個小型計算機奉獻于它,以便程序可以開發(fā)并存儲在本地。此外,一些 CNC 機床 有自動裝載零件和換刀。 CNC 機床 通常有實時,在線 程序 開發(fā) 的 能力,使 操作 可以迅速實施工程變更。 一個 DNC(分布式數控)系統(tǒng) 包含許多 CNC 機床由 一個 很 大的 可以 下載程序到分布式數控機床 的 計算機系統(tǒng)連接起來,這種制度為 用 生產計劃和調度零件加工的最終整 合是 必要的。 自動檢 測的 工作,也可實現,例如,視覺系統(tǒng)和壓力敏感的傳感器。檢 測 工作往往是乏味和容易出錯,尤其是在大批量制造設置,因此 對于 自動化 , 它是一個很好的候選人。然而,自動檢 測 (尤其是診斷能力)往往是十分困難和昂貴。這種情況,在自動化檢測系統(tǒng)的發(fā)展是 很 昂貴,但人類的檢查是容易出錯的,體現了自動化制造系統(tǒng),具有很高的可靠性值:在這種系統(tǒng)中,檢驗和測試策略可開發(fā)高可靠性功能,有可能大大減少了制造和測試的總成本。 自動化物料處理系統(tǒng) 移動工件工作中心 ,存儲單元和航運點 ,這些系統(tǒng)可能包括自主導引車,輸送系統(tǒng),或導 軌系統(tǒng)。通過連接在生產系統(tǒng)中 的分離點 ,自動化物料處理系統(tǒng)集成服務功能,減少在生產 過程 中 不同點之間的時間延遲 。 這些系統(tǒng) 促使程序 布局設計來 清晰地 描述,每個工件的路 徑 ,往往使小批量運輸工件 更 經濟,它 供予 減少等候時間的潛力。 柔性制造系統(tǒng)( FMS)是 這樣 一個系統(tǒng),自動化工作站與 一個 物料輸送系統(tǒng)連接 來 提供了 一個 比是在一個高度自動化 、非柔性、 傳輸線制造的零部件范圍更廣 的 多 級 的自動化制造 的 能力。 這些系統(tǒng)提供靈活性, 是 因為執(zhí)行的操作在每個工作站和工作站之間可以通過軟件控制不同部分的路由。 該柔性制造系統(tǒng)技術的承諾是提供了彈 性接近 的 能力, 在接近的設備可以用傳輸線取得的 在工作間 利用率。實際上,柔性制造系統(tǒng)是一種 在 這兩個極端中間 的 技術,但良好的管理可以幫助推動雙方邊界同時進行。 自動化工廠可以顯著差異就其戰(zhàn)略目的和影響。兩個例子,松下,通用電氣,可能是有益的。 3 頁 共 29 頁 在大阪,日本,松下電器產業(yè)公司擁有生產 磁帶 錄像機 的設備 。這一行動的心臟功能,有 100 多名工作 站的 高度自動化的機器人裝配生產線。除了一 些 故障排除 操作 和過程改進工程師 外 ,這條線可以運行,用很少的人力干預 , 接近每天 24 小時, 生產 任何型號的 200 錄像機 的 組合 , 截至 1988 年 8 月 。 該設施沒有得到充分利用 ;松下準備增加產量,每月運行的設施的時間更多,隨著需求的實現。 在這種情況下,生產更多 的 邊際成本非常低 ,為 錄像機行業(yè)準入 , 松下有效地創(chuàng)建了一個障礙,使進入者很難在價格上競爭。 第二個例子是通用電氣公司飛機發(fā)動機集團三廠,于琳,馬薩諸塞州。這完全自動化的工廠機器的小套零件由飛機發(fā)動機集團的裝配廠使用。相反,松下 電器 工廠,它負責在錄像機產品市場的戰(zhàn)略優(yōu)勢,戰(zhàn)略優(yōu)勢由 GE 工廠提供的似乎解決其勞動力市場 ,三廠的投資現在 是 沉沒 , 最終,它將 以 一個小 隊高效率地日夜不停的 運行。 由于體積 被增加 , 美 國 通用電氣公司有能力利用三廠的 生產力、 成本結構 和 其工會的 勞動力 促使 目前 制造的許多零件 , 這些零件 最終可能被轉移到三廠地區(qū)。因此,工廠自動化可以解決從產品市場的考慮 到 勞動市場的擔憂 的 多種類型的戰(zhàn)略需要。 自動化工程 從最初的概念分析 到最后的 處理計劃, 高于 和支持制造業(yè)正變得日益自動化 的 工程功能。在許多方面,工程自動化 與 工廠自動化是非常相似 的 ,這兩種現象可以大大提高勞動生產率,同時提高了其余員工 的 工作知識比例。然而,對于許多公司來說,經濟回報結構和兩種技術的理由程序可以完全不同。 自動化和工廠自動化工程之間的差異源 于對技術的兩種類型的規(guī)模經濟差異。在許多情況下,工程自動化的最低有效規(guī)模是相當低的。在工程工作站的投資往往是合理與否是網絡化,到更大的系統(tǒng)集成。提高工程師的生產率就足夠了。 對于工廠自動化的理由, 相反的意見是更頻繁的案件 。所謂 “自動化孤島 ”已經到了意味著在工廠自動化的小投資,其本身的投資提供了一個可憐的回報。許多公司認為,工廠自動化投資必須在質量,交貨時間 前 充分結合和 廣泛的 在操作 中 普遍,靈活性顯現出來。 計算機輔助設計有時被用來作為電腦輔助繪圖,電腦輔助工程分析,計算機輔助工藝規(guī)劃的 涵蓋性術語 。這些技術可 用于自動化的工程設計工作帶出 來的 大量 苦差事 ,讓工程師可以 花他們更多的 時間和精力專注于具有創(chuàng)造性和評估可能 性 更廣 的 設計思路。在不久的將來機器 將 不會設計產品。設計功能仍然幾乎完全在人類有關的領域。 計算機輔助工程允許用戶采取必要的工程分析,如有限元分析,提出設計,同時他們在 繪圖板 階段。這種能力可以顯著降低在產品開發(fā)周期的需要費時原型和測試。 計算機輔助工藝規(guī)劃有助于自動產品已被設計的產品,發(fā)展 程序 計劃的制造工程師的 自動化 工作 ,一旦產品被設計 。 規(guī)劃和控制自動化 4 頁 共 29 頁 計劃和控制的自動化是最密切相關的物料需求計劃( MRP)。古典 的 MRP 開發(fā) 生產計劃和時間表是通過 利用產品的物料清單和生產前置時間 來 爆炸的客戶訂單和需求預測當前和預計的,庫存水平拘捕和日程安排。 MRP 的系統(tǒng)(第二代 MRP)是制造資源計劃系統(tǒng),建立在基本 MRP 的邏輯,但也包括車間控制模塊,資源需求計劃,庫存分析,預測,采購,訂單處理,成本會計,并在不同程度詳細容量規(guī)劃。 在規(guī)劃和控制的自動化投資的經濟因素更為相似, 比如 投資在工廠自動化 比在 工程自動化 是很相似的 。由一個投資 在 MRP II 系統(tǒng)的回報只能通過分析整個生產運作加以估計,也 就 是工廠自動化的情況 , 該技術的 綜 合功能提供了部分的好處 。 集成在制造 業(yè) 在制造業(yè)領域的四個重要的運動是推動 廣泛 制造一體化的實現: *準時 制 生產( JIT) ; *可制造性設計( DFM) ; *質量功能展開( QFD) ; *計算機集成制造( CIM)。 其中, CIM 是唯一一個直接關系到新計算機的技術。準時生產,質量功能展開,和可制造性設計 ,這是組織管理方法,不是天生的 計算機 化 和 不依賴任何新技術的發(fā)展。我們將在這里簡要地看著他們,因為他們是重要的變化, 這些變化是 許多制造業(yè)的組織承諾,因為他們 集成 的目標是非常一致的。 準時 制 生產( JIT) 準時生產 體 現了追求精簡或連續(xù)流為離散制造產品生產 的 理念。核心理念是降低在整個生產系統(tǒng)的制造安裝時間 、 可變性 、 庫存緩沖和交貨時間,從供應商到客戶,以實現產品的高品質,快速,可靠的政績觀 和 低成本。 在一個工廠工作 站之間的工作時間和庫存緩沖區(qū) 的 減少,以及客戶與供應商 之間 ,創(chuàng)建 了 一個更加一體化的生產體系 。 人們在每個工作中心研制出一種更好的需要和他們的前輩和接班人的問題意識 。這種意識,有合作的工作文化相結合,可以幫助顯著提高質量和 減少 變異。 技術投資也就是機器和 計算機 , 它 不需要 JIT 的實施。相反, JIT 是一種管理技術,這種 技術 主要依賴于持續(xù)不斷追求生產經營逐步改善。如果沒有重大的資本投資 , JIT通過 CIM 完成 一些 相同的整合目標。只是因為它是難以量化成本和中 在 工廠自動化 的投資收益,也難以量化成本和 “軟 ”技術作為 JIT 的好處。最近的一些模型試圖做這樣的量化,但該工作 方法 還沒有得到廣泛應用。 可制造性設計( DFM) 這種方法有時被稱為并行設計或同步工程。 DFM 是相關的追求設計工程師 、 工藝工程師 和 制造人員 之間更緊密 的溝通和合作 的 一 組 概念集。在許多工程組織,傳統(tǒng)產品開發(fā)的 實踐在 產品設計師完成其工作之前,流程設計人員可以開始他們的 設 計, 以這樣 5 頁 共 29 頁 的方式 開 發(fā) 產品 將不可避免地需要工程師為制造 產品做 重大 的 工程 變 更 , 努力尋找一種方法來 降低 度產品成本。 質量 功能展開( OFD) 密切相關的可制造性設計是質量功能展開( QFD)的 概念 , 它 需要增加產品設計師 、營銷人員 和 最終用戶 之間的交流 。在許多組織中,一旦最初的產品概念 被 開發(fā), 在沒有營銷人員和工程設計人員之間顯著的交互作用 下 將長期通過。因此,作為設計師面臨無數的技術決策和權衡,他們 將在 很少的營銷或客戶 的投入中作出 選擇。這種做法在產品引進中 往往導致長期拖延,因為重新設計工作是 非常 必要 的, 一旦營銷人看到原型。 質量功能展開正式確定在整個產品開發(fā)周期之間的互動營銷和工程組,保證決策的設計與所有的技術和市場作出充分 的 權衡考慮。 兩者合計, 設計的 可制造與質量功能展開 促進了 工程 、市場 營銷 和生產的 一體化,降低 了 總產品開發(fā) 的 周期,提高了產品設計的質量,為雙方的生產組織和買 該 產品 的顧客所感知 。 就像及時生產 ,可制造性設計與質量功能展開 在本質上 不是 主要 技術 , 然而,如電計算機 輔助設計技術常??梢杂脕碜鳛楣ぞ?來 促進工程 /制造 /銷售一體化。從某種意義上說,這種用法可以 被作為計算機集成 制造 來 實施這些政策的選擇。 計算機集成 制造( CIM) 計算機集成制造是指利用計算機技術 將制造一個產品相關的所有功能 聯系在一起 。因此, 計算機集成制造既 是信息系統(tǒng) 又的 制造控制系統(tǒng)。由于它的意圖是如此的包羅萬象,甚至以一種有意義的方式描述 CIM 都 是很困難的。 我們簡述一個相對簡單的概念模型, 這概念模型 涵蓋了主要的信息需求,并在制造企業(yè) 中 流動。該模型由兩個系統(tǒng) 單元 類型 組成 : *部門的供應和 /或使用的信息 ; *流程改造,合并,或以某種方式處理信息。 模型中的九個部門為: 1、 生產 2、 采購 3、 銷售 /市場營銷 4、 工業(yè) 與制造工 程 5、 產品設計工程 6、 物料管理和生產 計劃 7、管理員 /金融 /會計 8、 工廠和企業(yè)管理 9、 質量保證。 *流程改造,合并,或以某種方式處理信息。 6 頁 共 29 頁 1、 成本分析 2、 庫存分析 3、 產品線分析 4、 質量分析 5、 勞動力分析 6、 主計劃 7、 物料需求計劃( MRP) 8、 機器及設備投資 9、 工藝設計和布局。 為了完成一個特定的制造系統(tǒng)模型的規(guī)范,必須 在 上面列出 的部門和 信息處理 之間記錄 信息流。 這樣的信息流圖可以 作為 CIM 的設計概念藍圖,可以 在 可視化的范圍和 CIM信息系統(tǒng)的功能 給予幫助 。 設計 并實現一個把 所有信息供應商 、 處理器 和 用戶連接在一起 的 計算機 系統(tǒng)是一個漫長,艱難和昂貴的任務。這 樣的一個系統(tǒng)必須滿足 不同的用戶群體的需求, 并且 必須有 不同 的 品種 軟件和硬件子系統(tǒng) 經濟效益受益于 這樣一個系統(tǒng), 該系統(tǒng) 來自更快 更可靠的通信 , 里面的 組織內部員工之間以及產品質量和交貨時間方面產生的改善更可靠的通信來經濟效益。 因為許多 CIM 系統(tǒng) 所帶來的好處要么是 無形的 要么是 非常難以量化 的 , 因此 決定 去追求 CIM 方案 的 必須基于一個長期的 、 戰(zhàn)略性的承諾 來 提高制造能力。 描繪 許多美國制造業(yè) 關注 的決策過程 的 傳統(tǒng)回報投資 的 評估程序將不足以促使大量資金和 需要 時間積極 去 追求 CIM。盡管費 用較高 和 CIM 實施的不確定性, 但 大多數美國大型制造企業(yè) 還是投資一些資源 來 探索利用計算機信息 系統(tǒng) 整合其組織 中 各種功能的可行性。 技術采用的影響 :靈活性和資本密集 如上所述,在工廠自動化和 CIM 投資 中,公司 朝著更加自動化和一體化 的 方向 發(fā)展 。為了充分評估這些投資機會,并權衡潛在 違反支付 的 費用 ,我們必須考慮 到這技術的兩個影響: ( 1) 生產經營的靈活性, ( 2)經營的 密集資本。 在這一節(jié), 在討論新的制造技術所創(chuàng)造的六個機遇之前 我們 先 簡要 的 來看看這兩種效應 : 制造業(yè)的靈活性 - 靈活地改變產品結構,改變生產比率, 并通過縮短制造系統(tǒng)內的周轉時間 和 自動為不同的產品 進行 設置和更換 來 推出新產品。在過去的十年 , 制造靈活性的重要性 對 企業(yè) 的 競爭力已 很 明顯, 因為 經濟和技術變革的速度已經加快,許多消費者和工業(yè)市場 已經 日益國際化。 7 頁 共 29 頁 由于這種競爭加劇的結果, 當 每家公司 都 要努力 地去 跟上 大群體工業(yè) 對手的新產品時, 產品生命周期縮短 了。 為了生存,公司必須迅速作出反應和靈活 去對 競爭 的風險 。因此,企業(yè)必須特別 關注 新 制造 技術的靈活性組成部分 的 評估。 增加資本 的 密集是直接從大規(guī)模地用機器代替人的自動化。一個 改革 對資本密集的 成本結構有兩個重要的 影響。 首先, 來自 低固定投資和高位可變成本 的 制造成本結構的變化, 它 具有很高的 資產固定投資 和 低可變成本。這一變化將顯 著地 影響一個公司的挑戰(zhàn)競爭能力,因為低可變成本讓公司維持甚至面對激烈的價格戰(zhàn)的盈利能力 很 短 暫 。 其次,自動調整在這兩個 職業(yè) 水平和工作責任所帶來的變化需要大量的組織 , 這種挑戰(zhàn)所帶來的改變在下面討論。 新的 制造 技術制造 所 創(chuàng)制 的 六項挑戰(zhàn) 1. 計算機集成制造系統(tǒng) 的 開發(fā) 和設計 由于其雄心勃勃的一體化目標,計算機集成制造系統(tǒng)將是巨大的,復雜的信息系統(tǒng)。理想的情況下,設計過程中應先從 CIM 使命闡述 的 一系列具體目標 和任務的聲明之后 開始 。這種自上而下的設計方法,確保了硬件和軟件組件 已被 設計成一個有凝聚力的 系統(tǒng) 。 此外,由 自從 CIM 集成的中央數據庫加一個分布式數據庫組成 的創(chuàng)立 ,數據庫設計是 至關重要的 。 并且 , 自從 組織中的許多人將 要 負責 錄 入到系統(tǒng)中的數據,他們必須了解它們 在 整個系統(tǒng)的功能互動。用戶的輸入必須考慮在設計階段 和 檢查數據庫的準確性和完整性 的 系統(tǒng)必須被包括在內。 在系統(tǒng)設計階段必須考慮硬件和軟件的標準化。在許多公司,計算機和數據庫 功 能都來自 不同的 供應商, 這些供應商的 產品不是特別兼容。要么重新裝備或開發(fā)這些計算機系統(tǒng)連 接在一起, 這樣 需要大量的資源。 顯然,設計一個被確認為組織內外 都 成功 的系統(tǒng) ,是一項艱巨的挑戰(zhàn)。 這樣的系統(tǒng)是 很少 的 ,如果 需要 的話,公司 也要按 任務的日期 去 充分 地完成這任務 。 2. 人力資源管理系統(tǒng) 如上所述,重大的調整是需 要合并 新工廠自動化和計算機集成制造技術的實施的組織。如果新技術不是在一個新建的網站安裝,那么裁員往往是 這 變化的 一種 后果。有效的減少其余員工可能不可避免地認為這是誰的企業(yè),而不是退卻跡象振興裁員士氣問題。 此外,人力資源問題不 是 僅限于 為了 簡單地裁減一定數量的人,然后就 向前用 其余團體 。 計算機集成制造 和 自動化技術放在要求能力顯著提高的組織 , 再培訓和持續(xù)教育必須是企業(yè)的希望與這些技術的競爭規(guī)則,公司必須經歷一個文化轉型。 再培訓和持續(xù)教育的要求至少 是 在工廠車間 做這些 新 技術工作管理人員和工程師。設計 自動化工廠 、 管理自動化工廠 和 自動化工廠設計的產品 與傳統(tǒng)的勞動密集工廠相比 8 頁 共 29 頁 它更 都要知識 和技能 的補充 。 高級管理人員必須評估 計算機集成制造 技術以及與他們工作的人, 這 技術也可大大受益于有關的教育。 3. 產品開發(fā)系統(tǒng) 工廠自動化和計算機集成制造使產品設計師的工作更加困難。人類 開發(fā)的 生產系統(tǒng)比 自動化制造系 統(tǒng)更 適 用, 當設計師正在 為一個手工 建立 產品 設置 要求 時 , 它 們可以 提供一些模糊的 規(guī)格, 它們 知道人類可以容納組裝加工或裝配意外所發(fā)生的問題,或者至少可以發(fā)現問題并 傳達這些問題給 設計師重新設計。 在自動設置 中 ,設計人員可以不依賴于制造系統(tǒng) 就 可以輕松地發(fā)現和恢復設計 中的錯誤 ,有嚴格限制水平的智能和適應性也可以設計成自動化制造系統(tǒng) ,,因此產品設計必須有非常熟悉生產系統(tǒng)或 與這些有過 親密交流 的人來做 。發(fā)展中國家在該組織的設計能力是 的一定的困難, 但實現世界一流的制造系統(tǒng)卻是必要的一步。 4. 管理動態(tài)過程 的 改進 在大多數運行良好,勞動力密集的制造系統(tǒng),由 一支充滿活力的員工隊伍,不斷努力,以發(fā)現更好的方法執(zhí)行其工作 來 不斷改進的結果。在一個高度自動化的工廠,有幾個工人 去 觀察,測試,實驗, 考慮和 了解系統(tǒng)以及如何使它更好。因此,一些觀察家聲稱,工廠自動化將意味著學習曲線的末端 是 作為制造業(yè)競爭力的重要因素。這種說法 長時間的 違背了工業(yè)生產力的進步 , 一批根本 的技術之后創(chuàng)新一系列 的 有利于不斷改進完善新技術。 評估 這一主題 的 大多數學生認為,此種 是 為盡可能多的總生產率的增長,做根本性創(chuàng)新 而 漸進累積的。從本質上講,任何激進的創(chuàng)新可能會被認為是第一個通過創(chuàng)新, 這一創(chuàng)新 需要更多的創(chuàng)新 ,才達到其最大潛力。 假 定,工廠自動化和 CIM 將扭轉為時過早 和 有可能誤導管理人員和這些技術的實施者的 這一歷史性模式。由于這些技術新 的援助 如此復雜,不能指望所有相關捕捉 的 知識都 在系統(tǒng)設計階段 里 。如果一個企業(yè)承擔,一旦 在適當的位置 ,這項技術將不會受到非常多的改善, 它 將評估,設計和管理體系更加不同于如果假定 大多 好處可以通過更多地了解該系統(tǒng)一旦到位如何最好 的 使用和改進。有人可能會希望能觀察到自我實現的預言在這方面 , 即使一個自動化的工廠已經 有一些人 (潛在的創(chuàng)新者), 投資 在 將能 確保那些目前培訓以發(fā)現 、 捕捉并盡可能地適用 新知識的人 的 這一技術的公司是明智 的 。事實上,不斷發(fā)現和利用改進的機會可能是對企業(yè)完全避免無人工廠的主要原因。 5.采購技術 在 評估一個 特殊的 技術方案 之前 ,該方案必須合理地明確界定。一個企業(yè)需要選擇設備和軟件供應商,并決定設計 、 生產 、 安裝和將與內部工作人員執(zhí)行 的集成技術的數量 。許多觀察家認為,作為 企業(yè) 盡可能多的 做 技術開發(fā),以盡量減少對企業(yè)的工藝技術信息的泄漏,并保證 一 間公司的新技術和現有的戰(zhàn)略 、 人員和資本資產做適當的配合。 對于外部獲取 的 技術, 在它們 進行評估 之前, 技術 的 方案必須產生。在制定這些方案 時 ,公司必 須考慮其目前的資產,環(huán)境,市場地位,以及作為其競爭對手。設備廠商 9 頁 共 29 頁 必須納入決策過程 , 供應商和技術評估標準必須在組織內發(fā)展和利用。 6.系統(tǒng)控制和性能評價 一旦技術的投資選擇已經實施, 管理者 通常要跟蹤該投資的有效性。 衡量制造業(yè) 的性能的 傳統(tǒng)方法的缺點是廣泛的認可。這些方法 的大多數 可以被操縱,以使目前的結果看未來業(yè)績的潛在支出好。 當管理者 僅 花費 在 他們的職業(yè)生涯中的一個設施或位置 的 一小部分 時 ,他們往往有動力 去 進行這種操作。此外,在許多環(huán)境中,為設施適當的性能標準要求信息的一個或多個競爭對手的設施,上及時,準確的數據 可能不可用。 越來越多的企業(yè)正在使用 制造性能的 多維措施。而不是僅僅根據統(tǒng)計匯總盈利能力,質量,交貨期,質量成本,交貨性能和全要素生產率的措施正在利用評價業(yè)績。盡管這種趨勢,企業(yè)可以受益于更多的研究,例如,為生產力和學習率的標準 設置一個高度自動化 和 集成 的 環(huán)境。 采用新技術 的 經濟評估 對于購買 硬件,軟件和服務 , 采用該技術 的 成本是最明顯和最容易提前估計前期資本 的 支出。大多數模型只考慮這些費用。但是 下面這些也很重要:( 1)被 裁 的 員 工 的技能將不會在新系統(tǒng)中使用 所需的費用 , ( 2)新技術引起的操作設備引起的設備損壞的 費用 ( 3)人力資源發(fā)展所需的設計,建造,管理,維護和操作新系統(tǒng)的成本。 投資在工廠自動化和計算機集成制造 是 流程戰(zhàn)術和戰(zhàn)略的好處。這些利益涉及到一家 公司的成本結構變化,增加 了 工藝重復性和一致性,降低 了 庫存,提高 了 靈活性,并縮短流程和通訊線路。 關于投資 在 CIM 的 成本結構和工廠自動化往往代表了大量的前期成本, 這成本 導致了每 個 單位產出的可變成本減少。 這個 主要 是人力勞動 取代機器 的 結果。 當企業(yè)之間 的競爭非常 高時,降低 可變成本 可以 提供 顯著的 競爭優(yōu)勢,此外,降低可變成本,有時會導致企業(yè)削減價格,潛在地增加市場份額和收入 。 CIM 和工廠自動化給予 的 產品 的 重復性 和一致性所引出的優(yōu)點的增加 也有 著 顯 著 提的 競爭力。減少 加工 變異 、 減少廢料和 重修定 成本,可變成本儲蓄的來源,可以作為通過自動化減少 普通 勞動 力的 成本。此外,提高了產品的一致性, 可以 顯 著地 提供產品市場銷售 量的 增長。 改進 程序 控制 的二次 影響包括提高 在一個運行良好的系統(tǒng)順利工作的員工 士氣( 很少 缺勤和離職) 自動化和集成投資 的財產的 庫存減少可以來自幾個方面 , 首先,工廠自動化可以減少某些類型的操作設置時間,減少 了 周期庫存的需要。 其次 ,降低 程序 變異性可 心 降低性 在 整個 制造 系統(tǒng) 中的 不確定 性 ,減少了安全庫存的需要。第三,工廠 集成 可以縮短生產周期,減少了 在制造過程中 通過系統(tǒng) 的 庫存 流 。 柔性制造 是 CIM 和工廠自動化提供的另一個重要的戰(zhàn)略優(yōu)勢??焖俎D換工具和設備使公司能夠迅速改變產品結構,以響應變化的市場需求。此外,數控編程及 計算機 工藝 10 頁 共 29 頁 設計縮短產品上市時間 和縮短企業(yè) 推出 大量 新產品的 時間 。全自動化制造系統(tǒng)提供批量柔 性。前面提到的松下錄像機 企業(yè)的 高度自動化可以改變其相對較低的產出率 和 通過增加或減少每月運行費用的小時數 來 調整 成本 。因為 該企業(yè)的直接勞動力 是相當小,產量下降不會導致戲劇性的開工不足 和 不需要增加 主要雇用和培訓工作。 最后,在工作地點交貨時間 的 縮短將降低車站之間的工作流程時間,從而減少了制品 在 系統(tǒng) 中 的需要。隨著庫存和交貨時間的減少,企業(yè)可能增加快速交貨 的利潤費用 或可能通過提供更好的服務和保持價格不變 來 增加市場占有率。 概要和結論 增加全球競爭和環(huán)境的波動性 要求 企業(yè) 能 迅速適應,否則將面臨滅絕的可能性。投資于自動化和集成,包括 硬件,比如 自動機和柔性制造系統(tǒng), 軟件,如 計算機集成制造系統(tǒng) 和 如 及時生產、 可制造性設計 和 可以幫助公司實現和保持競爭力的 管理方法。 當然,總是 以 最短的資產供應 的是 管理遠見和領導才能。制 造業(yè) 戰(zhàn)略 創(chuàng)新必須 優(yōu) 先于技術投資決策,因為良好的技術很少保存不善 的 管理。因此,企業(yè)必須補充其有關的信息和對他們的業(yè)務挑戰(zhàn)和機遇的見解技術 進行 選擇 的 學習。 查爾斯任教于麻省理工學院斯隆管理學院 的 經營管理和生產戰(zhàn)略。他擁有博士和碩士學位,斯坦福大學的學士學位和杜克大學的學位。他曾撰寫了 許多 關于生產問題,包括質量改進的經濟性 和 以柔性制造系統(tǒng)的投資模式的 文章。他 經歷 的 工業(yè)咨詢,執(zhí)行教學和研究項目包括:數字設備工作公司,柯達,通用電氣, IBM 和摩托羅拉。 注射成型塑料制品 設計和制造的知識庫系統(tǒng) 摘要 本文介紹了一個 重 要塑模 知識庫系統(tǒng)的制定和實施。這 知識庫 ,名為啟迪,是基于網絡 技術 建立的 ,因為它的普遍性,易用性,傳播 方便性 ,它的超文本,導航和搜索功能,以及支持通過互動 的( Java, JavaScript,和 CGI)和多媒體(文本,圖形,視頻和音頻)。 按照設計,內容和啟示工具可以查看和 共享 在此 過程中所涉及的 事 方,使用任何 網頁 瀏覽器在本地主光盤或通過互聯網( 內聯網 和 外聯外 )。 導言 以知識為基礎的系統(tǒng),是維護本組織內的知識和為建設公司 1企業(yè) 生存 的理想技術。它在不同的部門,紀律,組織知識也扮演 著 一個 的 重要作用。信息技術消 除 了 地域和時間的限制,通過計算機網絡使得在自己的臺式機或筆記本電腦 都 隨時 可以查得到 信息 11 頁 共 29 頁 我們制定并實施了 一個 復雜的注塑 工藝為 給了 知識庫 最佳人選啟示。 這任務涉及到注塑成型塑料件 的 設計和制造,包括對產品的造型, 零件 工程 設計 ,材料選擇,模具設計,模具制造( 工藝裝備 ),注塑成型, 計算機 輔助工程( CAE)。這些 綜合 學科知識的任務要求和零 件的設計 和模具,材料 屬性 ,加工,計算機仿真設計能力,以及解決問成型問題決策的 能力 。 絕大多數 信息和技能的要求,為不同部門的工程師 引進 項目的同時, 也 超出了人類大腦的存儲容量。它也需要一種 手段來存儲和共享產品信息。發(fā)起的啟蒙任務是建立一個可擴展的框架,封裝,組織和傳播的關鍵設計,加工, CAE 分析資料,塑料工程師和管理人員。利用網絡為基礎的技術,我們創(chuàng)建了一個知識 庫 ,通過提供一個良好設計的用戶在一個堅固的數據結構,建立一個強大的接口信息存儲和檢索系統(tǒng)。系統(tǒng)組件和實施過程將在下面的章節(jié)中討論。 . 系統(tǒng)組件 A:源文件和數據庫 知識庫 的主要組成部分是信息模塊(見模塊和圖像的信息)。我們選擇的FrameMaker 源文件格式, 它是 桌面出版最流行和強大的工具之一。雖然我們認為 把FrameMaker 文件轉換為可移植文檔格式 ( PDF)( 這是免費下載), 但 我們決定 用 原有標準萬維網( WWW) 上 超文本標記語言( HTML)格式。這一決定的原因是我們 的圖像 網頁質量的提高, 這是 由瀏覽器顯示出來。我們使用第三方轉換工具( 網頁 出版社)轉換成 HTML 格式的 FrameMaker 文件,如圖 1 所示。出版 商允許我們定義頁面格式樣式,以確保在生成的 HTML 文件 視覺與 感覺一致。 由于必須保持持續(xù)的 知識 未來的增長,商業(yè) 相關的 數據庫應用程序已被用來管理源代碼和 HTML 文件(見圖 1)。每個源文件 記錄 數據庫中的 檔案 。記錄存儲有關文件的(信息模塊)的書名,作者,目錄路徑和獨特的八位數字。該記錄也保留了 源始資料 創(chuàng)建 的日期 , 不論實驗它的 HTML 副本是否已生成 ,并在知識 庫 的信息模塊插入標題。該數據庫文件名字段中 輸 入一個關鍵字表 示 特定項,以便我們可以自動的生成超鏈接索引。 B.信息模塊和圖像 該信息模塊,它作為知識庫 中 一個單一的 HTML 頁面,是啟蒙的基本組成單位。每個信息模塊提供特定的 主題 信息,并且 可以控制 超連結至其他相關信息模塊和公共網站(見圖 1)。顧名思義,信息模塊是模塊化的,可重復使用的信息塊。啟蒙的用戶接口是組織這些模塊 進 邏輯類別并提交給用戶 的 工具 。然而,這些模塊的用戶界面結構是完全獨立。我們可以添加模塊,洗牌 它 們周圍,從任何一個 菜單進 入 某個 模塊或完全刪除模塊。這些模塊存儲在一個位置,但無論 怎樣它都 會出現。圖形和數字圖像中包含的啟示 是由 與 Macromedia 公司的手工繪線 和 Adobe PhotoShop 的生產。它們保存在任一圖形圖像格式( GIF)或聯合圖像專家組( JPEG)格式。圖形是 在 序列文件中創(chuàng)造 的 運動假象 的 分層數 GIF 的 動畫 C.主要 的 主題標題 12 頁 共 29 頁 用戶界面組類似 下面 的幾個 主要 標題的信息模塊。這些主要的標題不是一成不變的,而是可以被重新命名, 重新排列,并酌情每個版本。目前的版本的啟蒙顯示五個主要議題:設計,材料,加工和 C -模,故障排除。每一個主要議題進一步細分為若干頂級水平。圖 2(上), 點擊 啟示主頁,提供了對主要議題的總體看法,并探討在頂層部分 的 表決。用戶可以點擊一個單獨的圖形來打開該課題的主要方向和相應的主網頁目錄。 除 了 C 模的標題 外 ,其中包含有關用 C -模具產品(仿真實例,案例研究, Java 工具和 CAE 分析報告)的信息,其他主要議題包括一般的,非特定軟件模塊 , 類似于一個塑料百科全書。 C -模報告部分提供了一種機制, 這種機制可以 為用戶建立自 己的 “ 知識 ” 和可以由組織內的不同群體共享 的 CAE 分析 的 報告存檔。 D.用戶 界面 當前用戶界面設計的啟示框架采用了 Web 頁面的格式,即:在瀏覽器窗口顯示在幾個不同的信息, 這瀏覽器 同時 由幾個 獨立的區(qū)域組成。正如圖 2(下)中看到,每個窗口 包含 三個框架。頂部框架是 一個 包含兩個菜單欄標題行:第 1 行中的導航按鈕和第 2行中的主題標題。側欄包含一個目錄,根據用戶選擇更新。主窗口是保留給顯示實際的主題。 E.合成樹脂 數據庫和搜索引擎 塑料 數據庫包含超過 4000 的 熱塑性樹脂 ,該樹脂 是一種啟蒙的 專用功能部件 。流長圖(顯示 了 在一定 的工藝條件 下 可樹脂以流動程度), 允許 用戶 支 比較樹脂的流動性。我們 合并 了 一家 商業(yè) 的 搜索引擎,以便 于 搜索 基于 制造商和商品名稱 的普通 分類 的 樹脂。 F. Java 工具 正如在圖 1 和圖 2 所示(在 C 模標題 下 ),我們已經制定了 一對 Java 應用程序 ,該應用程序 轉換 了多種單元系統(tǒng) 和估算的塑料零部件的成本。用戶可以從他們的 Web 瀏覽器啟動這些平臺 獨立的 Java 工具。 G.導航系統(tǒng) 為了幫助用戶快速檢索啟示的信息,我們已經實現了 一個 如圖 1 和圖 2(上) 所示的導航系統(tǒng), 如上所述,頂欄包含所有主題和導航選項 的 按鈕。 點擊一個 主標題或導 航按鈕將打開其主窗口和在側欄表格的主要內容頁。然后,用戶可以通過選擇瀏覽的內容表中的主題標題。該主題將 打開在 主窗口。 如 圖 2(下)顯示瀏覽器窗口的狀態(tài)后,用戶 首先 選擇在 頂檔的 設計按鈕,然后 從側欄生成的內容表點擊冷卻系統(tǒng)設計。主頁的設計是在主窗口可見,內容表列出了模塊的信息與相關 的 冷卻系統(tǒng)設計。 該導航按鈕包括一個網站地圖,這 網站地圖 是一個全球性的內容層次表, 這表 幫助 13 頁 共 29 頁 用戶獲得相互關系主題在信息。該 索引在 另一方面平展了層次結構,并顯示一個鏈接到相應的主題 的 關鍵詞字母。 這 術語表給出了術語及其定義,按字母順序排列。 搜索提供全文搜索用戶指定查詢的功能。搜索返回了一套有關于他們的相關主題連結加權名單。 . 最后的 商標 到目前為止,我們已經創(chuàng)造數百個不同主題 的 信息模塊,作為啟蒙信息庫。我們還制定補充導航功能,并采納了一個用于訪問任何 Web 瀏覽器 的 主題模塊的搜索引擎。我們目前的重點是開發(fā)文件管理工具, 該工具 管理由 CAE 軟件項目報告生成,并加入向導形式的互動性。我們的目標是讓用戶能夠管理他們自己產生的信息,使企業(yè)能夠成為一個啟示,聰明的知識管理工具。 14 頁 共 29 頁 New Manufacturing Technologies INTRODUCTION Driven by international competition and aided by application of computer technology, manufacturing firms have been pursuing two principal approaches during the 1980's: * automation, and * integration. Automation is the substitution of machine for human function; integration is the reduction or elimination of buffers between physical or organizational entities. The strategy behind manufacturing firms' application of new automation technologies is multidimensional: * to liberate human resources for knowledge work, * to eliminate hazardous or unpleasant jobs, * to improve product uniformity, and * to reduce costs and variability. The execution of that strategy has lead firms automate away simple, repetitive, or unpleasant func tions in their offices, factories, and laboratories. Integration, when used as an approach to improve quality, cost, and responsiveness to customers, requires that firms find ways to reduce physical, temporal, and organizational barriers among various functions. Such buffer reduction has been implemented by the elimination of waste, the substitution of information for inventory, the insertion of computer technology, or some combination of these. In most process industries - oil refining and papermaking, for example - automation and integration have been critical trends for decades. However, in discrete goods manufacture - electronics and automobiles, for example - significant movement in these directions is a recent phenomenon in the United States. This chapter defines, examines, and illustrates the application of technologies that support the trends toward more automation and integration in discrete goods manufacturing. We begin with a discussion of the technological hardware and software that has been evolving. We then look at six management challenges that must be addressed to support these trends. And, finally, we look at the issue of economic evaluation the new technologies. AUTOMATION IN MANUFACTURING As characterized, for example, by Toshiba, in their OME Works facility, automation in manufacturing can be divided into three categories: *factory automation, *engineering automation, and *planning and control automation. Automation in these three areas can occur independently, but coordination among the three, as is being pursued by this Toshiba facility, drives opportunities for computer integrated manufacturing, discussed below. 15 頁 共 29 頁 Factory Automation Although software also plays a critical role, factory automation is typically described by the technological hardware used in manufacturing: robots, numerically controlled (NC) machine tools, and automated material handling systems. Increasingly, these technologies are used in larger, integrated systems, known as manufacturing cells or flexible manufacturing syste ms (FMS). The term robot refers to a piece of automated equipment, typically programmable, that can be used for moving material to be worked on (pick and place) or assembling components into a larger device. Robots are also used to substitute for direct human labor in the use of tools or equipment, as is done, for example, by a painting robot, or a welding robot, which both positions the welder and welds joints and seams. Robots can vary significantly in complexity, from simple single-axis programmable controllers to sophisticated multi-axis machines with microprocessor control and real-time, closed-loop feedback and adjustment. A numerically-controlled (NC) machine tool is a machine tool that can be run by a computer program that directs the machine in its operations. A stand-alone NC machine needs to have the workpieces, tools, and NC programs loaded and unloaded by an operator. However, once an NC machine is running a program on a workpiece, it requires significantly less operator involvement than a manually operated machine. A CNC (computer numerically-controlled) machine tool typically has a small computer dedicated to it, so that programs can be developed and stored locally. In addition, some CNC tools have automated parts loading and tool changing. CNC tools typically have real-time, on-line program development capabilities, so that operators can implement engineering changes rapidly. A DNC (distributed numerically-controlled) system consists of numerous CNC tools linked together by a larger computer system that downloads NC programs to the distributed machine tools. Such a system is necessary for the ultimate integration of parts machining with production planning and scheduling. Automated inspection of work can also be realized with, for example, vision systems or pressure-sensitive sensors. Inspection work tends to be tedious and prone to errors, especially in very high volume manufacturing settings, so it is a good candidate for automation. However, automated inspection (especially with diagnosis capability) tends to be very difficult and expensive. This situation, where automated inspection systems are expensive to develop, but human inspection is error-prone, demonstrates the value of automated manufacturing systems with very high reliability: In such systems, inspection and test strategies can be developed to exploit the high-reliability features, with the potential to reduce significantly the total cost of manufacture and test. Automated material handling systems move workpieces among work centers, storage locations, and shipping points. These systems may include autonomous guided vehicles, conveyor systems, or systems of rails. By connecting separate points in the production system, automated material handling systems serve an integration function, reducing the time delays between different points in the production process. These systems force process layout designers to depict clearly the path of each workpiece and often make it economical to transport workpieces in small batches, providing the potential for reduced wait times and idleness. A flexible manufacturing system (FMS) is a system that connects automated workstations with a material handling system to provide a multi-stage automated manufacturing capability for a wider range of parts than is typically made on a highly-automated, non-flexible, transfer line. These systems provide flexibility because both the operations performed at each work station and the routing of parts among work stations 16 頁 共 29 頁 can be varied with software controls. The promise of FMS technology is to provide the capability for flexibility approaching that available in a job shop with equipment utilizations approaching what can be achieved with a transfer line. In fact, a FMS is a technology intermediate to these two extremes, but good management can help in pushing both frontiers simultaneously. Automated factories can differ significantly with respect to their strategic purpose and impact. Two examples, Matsushita and General Electric, may be instructive. In Osaka, Japan, Matsushita Electric Industrial Company has a plant that produces video cassette recorders (VCRs). The heart of the operation features a highly automated robotic assembly line with 100-plus work stations. Except for a number of trouble-shooting operators and process improvement engineers, this line can run, with very little human intervention, for close to 24 hours per day, turning out any combination of 200 VCR models. As of August 1988, the facility was underutilized; Matsushita was poised to increase production, by running the facility more hours per month, as demand materialized. In this situation, the marginal cost of producing more output is very low. Matsushita has effectively created a barrier to entry in the VCR industry, making it very difficult for entrants to compete on price. The second example is General Electric's Aircraft Engine Group Plant III, in Lynn, Massachusetts. This fully automated plant machines a small set of parts used by the Aircraft Engine Group's assembly plant. In contrast to Matsushita's plant, which provides strategic advantage in the VCR product market, the strategic advantage provided by GE's plant seems to address its labor market. Plant III's investment is now sunk. Eventually, it will run around the clock at very high utilization rates with a very small crew. As volume is ramped up, GE has the ability to use Plant III's capacity and cost structure as leverage with its unionized labor force which is currently making many of the parts that could eventually be transferred to Plant III. Thus, factory automation can address a variety of types of strategic needs, from product market considerations to labor market concerns. Engineering Automation From analyzing initial concepts to finalizing process plans, engineering functions that precede and support manufacturing are becoming increasingly automated. In many respects, engineering automation is very similar to factory automation; both phenomena can dramatically improve labor productivity and both increase the proportion of knowledge work for the remaining employees. However, for many companies, the economic payback structure and the justification procedures for the two technologies can be quite different. This difference between engineering automation and factory automation stems from a difference in the scale economies of the two types of technologies. In many settings, the minimum efficient scale for engineering automation is quite low. Investment in an engineering workstation can often be justified whether or not it is networked and integrated into the larger system. The firstorder improvement of the 17 頁 共 29 頁 engineer's productivity is sufficient. For justification of factory automation, the reverse is more frequently the case. The term "island of automation" has come to connote a small investment in factory automation that, by itself, provides a poor return on investment. Many firms believe that factory automation investments must be well integrated and widespread in the operation before the strategic benefits of quality, lead time, and flexibility manifest themselves. Computer-aided design is sometimes used as an umbrella term for computer-aided drafting, computer-aided engineering analysis, and computer-aided process planning. These technologies can be used to automate significant amounts of the drudgery out of engineering design work, so that engineers can concentrate more of their time and energy on being creative and evaluating a wider range of possible design ideas. For the near future machines will not typically design products. The design function remains almost completely within the human domain. Computer-aided engineering allows the user to apply necessary engineering analysis, such as finite element analysis, to propose designs while they are in the drawing board stage. This capability can reduce dramatically the need for time-consuming prototype work up and test during the product development period. Computer-aided process planning helps to automate the manufacturing engineer's work of developing process plans for a product, once the product has been designed. Planning and Control Automation Planning and control automation is most closely associated with material requirements planning (MRP). Classical MRP develops production plans and schedules by using product bills of materials and production lead times to explode customer orders and demand forecasts netted against current and projected inventory levels. MRP II systems (second-generation MRP) are manufacturing resource planning systems that build on the basic MRP logic, but also include modules for shop floor control, resource requirements planning, inventory analysis, forecasting, purchasing, order processing, cost accounting, and capacity planning in various levels of detail. The economic considerations for investment in planning and control automation are more similar to that for investment in factory automation than that for engineering automation. The returns from an investment in an MRP II system can only be estimated by analyzing the entire manufacturing operation, as is also the case for factory automation. The integration function of the technology provides a significant portion of the benefits. INTEGRATION IN MANUFACTURING Four important movements in the manufacturing arena are pushing the implementation of greater integration in manufacturing: * Just-in-Time manufacturing (JIT), * Design for Manufacturability (DFM), * Quality Function Deployment (QFD), * Computer-integrated Manufacturing (CIM). 18 頁 共 29 頁 Of these, CIM is the only one directly related to new computer technology. JIT, QFD, and DFM, which are organization management approaches, are not inherently computer-oriented and do not rely on any new technological developments. We will look at them briefly here because they are important to the changes that many manufacturing organizations are undertaking and because their integration objectives are very consonant with those of CIM. Just-in-Time Manufacturing (JIT) JIT embodies the idea of pursuing streamlined or continuous-flow production for the manufacture of discrete goods. Central to the philosophy is the idea of reducing manufacturing setup times, variability, inventory buffers, and lead times in the entire production system, from vendors through to customers, in order to achieve high product quality (conformity), fast and reliable delivery performance, and low costs. The reduction of time and inventory buffers between work stations in a factory, and between a vendor and its customers, creates a more integrated production system. People at each work center develop a better awareness of the needs and problems of their predecessors and successors. This awareness, coupled with a cooperative work culture, can help significantly with quality improvement and variability reduction. Investment in technology, that is, machines and computers, is not required for the implementation of JIT. Rather, JIT is a management technology that relies primarily on persistence in pursuing continuous incremental improvement in manufacturing operations. JIT accomplishes some of the same integration objectives achieved by CIM, without significant capital investment. Just as it is difficult to quantify the costs and benefits of investments in (hard) factory automation, it is also difficult to quantify costs and benefits of a "soft" technology such as JIT. A few recent models have attempted to do such a quantification, but that body of work has not been widely applied. Design for Manufacturability (DFM) This approach is sometimes called concurrent design or simultaneous engineering. DFM is a set of concepts related to pursuing closer communication and cooperation among design engineers, process engineers, and manufacturing personnel. In many engineering organizations, traditional product development practice was to have product designers finish their work before process designers could even start theirs. Products developed in such a fashion would inevitably require significant engineering changes as the manufacturing engineers struggled to find a way to produce the product in volume at low cost with high uniformity. Ouality Function Deployment (OFD) Closely related to Design for Manufacturability is the concept of Quality Function Deployment (QFD) which requires increased communication among product designers, marketing personnel, and the ultimate product users. In many organizations, once an initial product concept was developed, long periods would pass without significant interaction between marketing personnel and the engineering designers. As a result, as the designers 19 頁 共 29 頁 confronted a myriad of technical decisions and tradeoffs, they would make choices with little marketing or customer input. Such practices often led to long delays in product introduction because redesign work was necessary once the marketing people finally got to see the prototypes. QFD formalizes interaction between marketing and engineering groups throughout the product development cycle, assuring that design decisions are made with full knowledge of all technical and market tradeoff considerations. Taken together, Design for Manufacturability and Quality Function Deployment promote integration among engineering, marketing, and manufacturing to reduce the total product development cycle and to improve the quality of the product design, as perceived by both the manufacturing organization and the customers who will buy the product. Like Just-in-Time, Design for Manufacturability and Quality Function Deployment are not primarily technological in nature. However, technologies such as Computer-aided Design can often be utilized as tools for fostering engineering/manufacturing/marketing integration. In a sense, such usage can be considered as the application of computer integrated manufacturing to implement these policy choices. Computer-interated Manufacturing (CIM) Computer-integrated manufacturing refers to the use of computer technology to link together all functions related to the manufacture of a product. CIM is therefore both an information system and a manufacturing control system. Because its intent is so all-encompassing, even describing CIM in a meaningful way can be difficult. We describe briefly one relatively simple conceptual model that covers the principal information needs and flows in a manufacturing firm. The model consists of two types of system components: * departments that supply and/or use information, and * processes that transform, combine, or manipulate information in some manner. The nine departments in the model are: 1. production 2. purchasing 3. sales/marketing 4. industrial and manufacturing engineering 5. product design engineering 6. materials management and production planning 7. controller/finance/accounting 8. plant and corporate management 9. quality assurance. The nine processes that transform, combine, or manipulate information in some manner are: 1. cost analysis 2. inventory analysis 20 頁 共 29 頁 3. product line analysis 4. quality analysis 5. workforce analysis 6. master scheduling 7. material requirements planning (MRP) 8. plant and equipment investment 9. process design and layout. To complete the specification of the model for a specific manufacturing system, one must catalog the information flows among the departments and information processes listed above. Such an information flow map can serve as a conceptual blueprint for CIM design, and can aid in visualizing the scope and function of a CIM information system. Design and implementation of a computer system to link together all of these information suppliers, processors, and users is typically a long, difficult, and expensive task. Such a system must serve the needs of a diverse group of users, and must typically bridge a variety of different software and hardware subsystems. The economic benefits from such a system come from faster and more reliable communication among employees within the organization and the resulting improvements in product quality and lead times. Since many of the benefits a CIM system are either intangible or very difficult to quantify, the decision to pursue a CIM program must be based on a long term, strategic commitment to improve manufacturing capabilities. Traditional return-on-investment evaluation procedures that characterize the decision-making processes of many U.S. manufacturing concerns will not justify the tremendous amount of capital and time required to aggressively pursue CIM. Despite the high cost and uncertainty associated with CIM implementation, most large U.S. manufacturing companies are investing some resources to explore the feasibility of using computerized information systems to integrate the various functions of their organizations. TECHNOLOGY ADOPTION CONSEQUENCES: FLEXIBILITY AND CAPITAL INTENSIVENESS As explained above, investments in factory automation and CIM move a firm in the direction of more automation and integration. To fully evaluate such investment opportunities, and to weigh the potential pay-offs against the costs,' one must consider two consequences of these technologies: 1) the flexibility of the manufacturing operation, and 2) the capital intensiveness of the operation. In this section, we look briefly at these two effects before discussing six challenges created by the new manufacturing technologies. Manufacturing flexibility - flexibility to change product mix, to change production rate, and to introduce new products - is achieved by shortening lead times within the manufacturing system and by automating setups and changeovers for different products. The importance of manufacturing flexibility for firm 21 頁 共 29 頁 competitiveness has become apparent over the past decade as the rate of economic and technological change has accelerated and as many consumer and industrial markets have become increasingly internationalized. As a consequence of this increased competition, product life cycles shorten as each firm tries to keep up with the new offerings of a larger group of industrial rivals. To survive, companies must respond quickly and flexibly to competitive threats. Therefore, firms must pay particular attention to evaluating the flexibility component of the new manufacturing technologies. Increased capital intensiveness follows directly from automation on a large scale that replaces humans with machines. A transformation to a capital intensive cost structure has two important effects. First, the manufacturing cost structure changes, from one with low fixed investment and high unit variable costs, to one with high fixed investment and low variable costs. This change will affect significantly a firm's ability to weather competitive challenges, because low variable costs allow a firm to sustain short-term profitability even in the face of severe price wars. Second, the changes in both employment levels and work responsibilities brought about by automation require significant organizational adjustment. Challenges brought about by this type of change are discussed below. SIX CHALLENGES CREATED BY THE NEW MANUFACTURING TECHNOLOGIES 1.Design and Development of CIM Systems Because of their ambitious integration objectives, CIM systems will be large, complex information systems. Ideally, the design process should start with the enunciation of the CIM mission, followed by a statement of specific goals and tasks. Such a top-down design approach insures that the hardware and software components are engineered into a cohesive system. In addition, since the foundation of CIM consists of an integrated central database plus distributed databases, database design is critical. Also, since many people in the organization will be responsible for entering data into the system, they must understand how their functions interact with the entire system. Input from users must be considered at the design stage, and systems for checking database accuracy and integrity must be included. Hardware and software standardization must also be considered at the system design stage. At many companies, computing and database capabilities have come from a wide variety of vendors whose products are not particularly compatible. Either retooling, or developing systems to link these computers together, requires significant resources. Obviously, designing a system that will be recognized as a success, both inside and outside the organization, is a formidable challenge. Few, if any, companies have fully accomplished this task to date. 22 頁 共 29 頁 2. Human Resource Management System As mentioned above, significant adjustment is required for an organizat ion to coalesce behind the implementation of new factory automation and CIM technology. If the new technology is not installed in a greenfield site, then layoffs are often one consequence of the change. Reductions in force are inevitably associated with morale problems for the remaining employees who may view the layoffs as a sign of corporate retreat rather than revitalization. Furthermore, human resource problems are not typically limited to simply laying off a set number of people and then just moving forward with the remaining group. CIM and automation technologies place significantly greater skill demands on the organization. Retraining and continuous education must be the rule for firms that hope to be competitive with these technologies; the firm must undergo a cultural transformation. Requirements for retraining and continuous education are at least as strong for managers and engineers who work with these new technologies as for the factory workers on the plant floor. Designing automated factories, managing automated factories, and designing products for automated factories all require supplemental knowledge and skills compared with those required for a traditional, labor intensive plant. Senior managers, who must evaluate CIM technologies, as well as the people who work with them, also can benefit significantly from education about the technologies. 3. Product Development System Factory automation and CIM can make product designers' jobs more difficult. Human-driven production systems are infinitely more adaptable than automated manufacturing systems. When designers are setting requirements for a manually built product, they can afford some sloppiness in the specifications, knowing that the human assemblers can either accomodate unexpected machining or assembly problems as they occur, or at least can recognize problems and communicate them back to the designers for redesign. In an automated setting, designers cannot rely on the manufacturing system to easily discover and recover from design errors. There are severe limits to the levels of intelligence and adaptability that can be designed into automated manufacturing systems, so product designers must have either intimate knowledge of the manufacturing system or intimate communication with those who do. Developing such a design capability in the organization is a difficult, but necessary step for achieving world-class implementation of the manufacturing system. 4. Managing Dynamic Process Improvement In most well-run, labor-intensive manufacturing systems, continuous improvement results from a highly motivated workforce that constantly strives to discover better methods for performing its work. In a highly automated factory, there are few workers to observe, test, experiment with, think about, and learn about the system and how to make it better. As a consequence, some observers claim that factory automation will mean the end of the learning curve as an important factor in manufacturing competitiveness. Such an assertion runs counter to a very long history of progress in industrial productivity, resulting from a collection of radical technological innovations, each followed by an extensive series of incremental improvements that help perfect the new technology. Most students of the subject estimate that the 23 頁 共 29 頁 accumlation of such incremental improvements accounts for as much total productivity growth as do the radical innovations. In essence, any radical innovation may be thought of as a first pass innovation which requires much more innovation before it reaches its maximum potential. To presume that factory automation and CIM will reverse this historic pattern is premature at best, and potentially very misleading to managers and implementers of these technologies. Because these technologies are so new aid so complex, one cannot expect to capture all of the relevant knowledge at the system design stage. If a firm assumes that once it is in place, the technology will not be subject to very much improvement, it will evaluate, design, and manage the system much differently than if it assumes that much benefit can be achieved by learning more about how best to use and improve the system once it is in place.(potential innovators) in it, firms who invest in this technology would be wise to assure that those people who are present are trained to discover, capture, and apply as much new knowledge as possible. In fact, discovering and exploiting opportunities for continuous improvement might be the primary reasons for firms to avoid completely unattended factories. 5. Technology Procurement Before evaluating a specific technological option, that option must be reasonably well defined. A firm needs to choose equipment and software vendors, and to decide how much of the design, production, installation, and integration of the technology will be performed with in-house staff. Many observers argue for doing as much technology development in house as possible, to minimize information leaks about the firm's process technology, and to assure a proper fit between the firm's new technology and its existing strategy, people, and capital assets. For external technology acquisition, technological options must be generated before they can be evaluated. In developing these options, a firm must consider its current assets, environment, and market position, as well as those of its competitors. Equipment vendors must be brought into the decision process. Vendor and technology evaluation criteria must be developed and utilized within the organization. 6. System Control and Performance Evaluation Once a technology investment choice has been implemented, managers typically want to track the efficacy of that investment. The shortcomings of the traditional methods for measuring manufacturing performance are widely recognized. Many of these methods can be manipulated to make current results look good at the expense of potential future results. When managers spend only a small fraction of their careers in one facility or position, they often have an incentive to engage in such manipulations. In addition, in many settings, the appropriate performance yardstick for a facility requires information on one or more competitors' facilities, on which timely, accurate data may be unavailable. 24 頁 共 29 頁 Increasingly, firms are using multidimensional measures of manufacturing performance. Rather than depending on just a profitability summary statistic, measures of quality, lead times, cost of quality, delivery performance, and total factor productivity are being utilized to evaluate performance. Despite this trend, firms could benefit from more research on how, for example, to set standards for productivity and learning rates in a highly automated, integrated environment. ECONOMIC EVALUATION FOR NEW TECHNOLOGY ADOPTION The technology adoption costs that are the most visible and easiest to estimate in advance are the up-front capital outlays for purchased hardware, software, and services. Most models consider only these costs. Also important, however, are (1) costs of laying off people whose skills will not be used in the new system, (2) costs of plant disruption caused by the introduction of new technology into an operating facility, and (3) costs of developing the human resources required to design, build, manage, maintain, and operate the new system. The benefits that flow from investment in factory automation and CIM are both tactical and strategic. These benefits relate to changes in a firm's cost structure, increased process repeatability and product conformance, lower inventories, increased flexibility, and shorter flow and communication lines. With respect to cost structure, investment in CIM and factory automation tends to represent a large up-front cost that leads to a reduction in variable costs per unit of output. This characteristic results primarily from replacement of labor by machines. Low variable costs can provide significant competitive advantage when interfirm rivalry is high. In addition, reduced variable costs sometimes lead firms to cut prices, potentially increasing market share and revenues. The advantages arising from the increased repeatability and product conformance afforded by CIM and factory automation can also have significant competitive impact. Decreased process variability、 reduces scrap and rework costs, a source of variable cost savings that can be as important as the reduction of direct labor costs by automation. In addition, improved product conformance can provide significant sales gains in product markets. Secondary effects of improved process control include improved morale (and consequent reduced absenteeism and turnover) of employees happy to work in a system that runs well. Inventory reduction following automation and integration investments can originate from several sources. First, factory automation can reduce setup times for some types of operations, reducing the need for cycle stocks. Second, decreased process variability can decrease uncertainty in the entire manufacturing system, reducing the need for safety stocks. Third, factory integration can shorten manufacturing cycle times, reducing the in-process inventories 25 頁 共 29 頁 flowing through the system. Manufacturing flexibility is another key strategic advantage offered by CIM and factory automation. Rapid tool and equipment changeovers enable firms to quickly change product mix in response to varying market demands. In addition, NC programming and computerized process planning shorten the time to market and time to volume for new products introduced into the factory. Fully-automated manufacturing systems provide volume flexibility as well. The highly-automated Matsushita VCR factory mentioned earlier can change its output rate with relatively low and adjustment costs by increasing or decreasing the number of hours it runs each month. Because the factory's direct labor force is quite small, output declines will not lead to dramatic underemployment, and increases do not require major hiring and training efforts. Finally, reduced lead times between work stations will lower the flow times of work between stations, thus decreasing the need for WIP in the system. As inventories and lead times are reduced, firms may increase their profit margins by charging more for rapid delivery or may increase market share by offering better service and holding prices constant. SUMMARY AND CONCLUSIONS Increased global competition and environmental volatility require that firms adapt quickly or face the possibility of extinction. Investment in automation and integration, including hardware such as automated machines and flexible manufacturing systems, software such as CIM systems, and managerial approaches such as just-in-time and design for manufacturability, can help firms to achieve and maintain competitiveness. Of course, the assets always in shortest supply are managerial vision and leadership. Manufacturing strategy creation must precede technology investment decisions, because good technology rarely saves poor management. Therefore, firms must complement their learning about technology options with information and insights about their business challenges and opportunities. Charles H. Fine teaches operations management and manufacturing strategy at MIT's Sloan School of Management. He holds Ph.d and Master's degrees from Stanford University, and a Bachelor's degree from Duke University. He has authored a number of articles on manufacturing issues, including pieces on the economics of quality improvement and on models for investment in flexible manufacturing systems. His industrial consulting, executive teaching, and research project experience includes work at Digital Equipment Corporation, Eastman Kodak, General Electric, IBM, and Motorola. A Knowledge Base System for the Design and Manufacture of 26 頁 共 29 頁 Injection-Molded Plastic Products Abstract This paper presents the development and implementation of a knowledge base system (KBS) for an important polymer molding. This KBS, named Enlighten, is built on top of web-based technology because of its ubiquity, ease of use, convenient content dissemination, its hypertext, navigation, and search capabilities, as well as the support of interactivity (via Java, JavaScript, and CGI) and multimedia (text, graphics, video, and audio). By design, the contents and tools in Enlighten can be viewed and shared by parties that are involved in the process, using any major Web browser, either locally via CDROM or through the Internet, (intranet or extranet). I. INTRODUCTION The knowledge-based system is an ideal technology for preserving knowledge within the organization and for building the corporate memory of the firm l. It also plays an important role in integrating knowledge across different departments, disciplines, and organizations. Information technology removes geographic and time barriers, making information readily assessable at ones desktop or notebook computer through networks. We developed and implemented Enlighten for a complex injection molding procees a perfect candidate for a KBS. The tasks involved in the design and manufacture of injection-molded plastic parts consist of product styling, part engineering, material selection, mold engineering, mold fabrication (tooling), injection molding, and computer-aided engineering (CAE). These multidisciplinary tasks require knowledge of and decision-making abilities in the design of parts and molds, material properties, processing, computer simulation, and troubleshooting of molding problems. The sheer volume of information and skills required, as engineers of different departments conduct the project concurrently, goes beyond the storage capacity of the human brain. It also requires a means to store and share product information. The Enlighten task was initiated to establish a scaleable framework that encapsulates, organizes, and disseminates crucial design, processing, and CAE analysis information to plastics engineers and managers. Using web-based technology, we have created a knowledge base that supplies a powerful information storage and retrieval system via a well-designed user interface built upon a solid data structure. The system components and implementation process will be discussed in the following sections. . SYSTEM COMPONENTS A. Source Files and Database The major building block of Enlighten is the information module (see B. Information Modules and Images). We chose FrameMaker, one of the most popular and powerful desktop publishing tools available, as the source file format. Although we considered converting the FrameMaker files to the Portable Document Format (PDF) to be viewed by Adobe Acrobat Reader, (which is free for downloading), we decided to go with the HyperText Markup Language (HTML) format, a prevailing standard on the World Wide Web (WWW). One or the reasons for this decision was the improved quality of our graphicsrich pages when displayed by the browser. We use a third-party conversion tool (Web Works Publisher) to translate the FrameMaker files into HTML format, as depicted in Figure 1. Publisher allows us to define page-formatting styles to ensure a consistent look-and- feel in the resulting HTML documents. Since Enlighten must sustain continuous future growth, a commercial relational database application has 27 頁 共 29 頁 &nbs
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拆墻工程與勞務分包合同
- 快樂成長托兒所看護合同
- 短期安全保障協(xié)議
- 商務秘書個性化服務合同
- 房江湖服務合同操作指南
- 煤礦工程建設合作合同協(xié)議樣本
- 砌筑材料購買協(xié)議
- 班車租賃合同糾紛解決經驗和教訓
- 物流代購合同書模板
- 借款合同中的擔保
- 銀行客戶經理招聘面試題與參考回答(某大型集團公司)
- 殘疾人體育活動推廣與普及考核試卷
- 《安全系統(tǒng)工程》期末考試卷及答案
- 空氣動力學仿真技術:計算流體力學(CFD):CFD在飛機設計中的應用
- 2024新教材高中政治 第一單元 生產資料所有制與經濟體制 第一課 我國的生產資料所有制 1.1《公有制為主體 多種所有制經濟共同發(fā)展》教案 部編版必修2
- 2024年北京版小學英語必背單詞表
- 職業(yè)學院食品藥品監(jiān)督管理專業(yè)核心課《企業(yè)管理》課程標準
- 建筑公司證書津貼支付管理辦法
- 北師大版五年級上冊數學計算題大全1000道帶答案
- 電工二級技師試題及答案
- 中國成人心肌炎臨床診斷與治療指南2024解讀
評論
0/150
提交評論