



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1.2.1函數(shù)的概念一、教學(xué)目標(biāo)1、 知識與技能:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識2、過程與方法:(1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;(2)了解構(gòu)成函數(shù)的要素;(3)會求一些簡單函數(shù)的定義域和值域;(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;3、情態(tài)與價值,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性的重要性,激發(fā)學(xué)習(xí)的積極性。二、教學(xué)重難點:1、教學(xué)重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);2、教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;三、教學(xué)準(zhǔn)備1、學(xué)法:學(xué)生通過自學(xué)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo) .2、教學(xué)用具:投影儀 .四、教學(xué)過程(一)創(chuàng)設(shè)情景,揭示課題1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:(1)炮彈的射高與時間的變化關(guān)系問題;(2)南極臭氧空洞面積與時間的變化關(guān)系問題;(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題3、分析、歸納以上三個實例,它們有什么共同點。4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系(二)研探新知1、函數(shù)的有關(guān)概念(1)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域注意: “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x(2)構(gòu)成函數(shù)的三要素是什么?定義域、對應(yīng)關(guān)系和值域(3)區(qū)間的概念 區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間; 無窮區(qū)間; 區(qū)間的數(shù)軸表示(4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?通過三個已知的函數(shù):y=ax+b (a0) y=ax2+bx+c (a0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會。師:歸納總結(jié)(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。1、如何求函數(shù)的定義域例1:已知函數(shù)f (x) = +(1)求函數(shù)的定義域;(2)求f(3),f ()的值;(3)當(dāng)a0時,求f(a),f(a1)的值.分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R .(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合 .(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.(4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集) (5)滿足實際問題有意義.鞏固練習(xí):課本P22第12、如何判斷兩個函數(shù)是否為同一函數(shù)例3、下列函數(shù)中哪個與函數(shù)y=x相等?(1)y = ()2 ; (2)y = () ;(3)y = ; (4)y= 分析: 構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù)) 兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。 (四)鞏固深化,反饋矯正:(1)課本練習(xí)P19 1、2、3(五)歸納小結(jié)從具體實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念。 (六)設(shè)置問題,留下懸念1、課后作業(yè):P24第1、2、42、舉出生活中函數(shù)的例子(三個以上),并用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 團隊建設(shè)與溝通協(xié)作能力提升案例分析以某公司為例
- 藝術(shù)牙齒活動義齒設(shè)計教程
- 廣州地鐵參觀活動方案
- 幼兒早操開學(xué)活動方案
- 幼兒六一繪畫活動方案
- 幼兒園食堂互評活動方案
- 年度團隊建設(shè)活動方案
- 年三十電商活動方案
- 幼兒家園活動方案
- 幼兒團建特色活動方案
- 人教版語文四年級下冊期末測試卷含答案(4套)
- 中國象棋初級習(xí)題500例
- 江西省南昌二中心遠(yuǎn)教育集團九灣學(xué)校2023-2024學(xué)年八年級下學(xué)期期末考試物理試題
- 深入理解Nginx(模塊開發(fā)與架構(gòu)解析)
- 水力分析與計算智慧樹知到期末考試答案章節(jié)答案2024年安徽水利水電職業(yè)技術(shù)學(xué)院
- 初中人教版八年級下冊期末物理真題模擬試卷經(jīng)典套題
- 產(chǎn)品研發(fā)合作協(xié)議書(二篇)
- JBT 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規(guī)程
- 24春國家開放大學(xué)《離散數(shù)學(xué)》大作業(yè)參考答案
- 家長會課件:初中七年級家長會課件
- 廈門大學(xué)2023年826物理化學(xué)考研真題(含答案)
評論
0/150
提交評論