![外文翻譯--應(yīng)用新型延性纖維增強(qiáng)聚合物對混凝土梁的加固 英文版.pdf_第1頁](http://file.renrendoc.com/FileRoot1/2013-11/17/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d1.gif)
![外文翻譯--應(yīng)用新型延性纖維增強(qiáng)聚合物對混凝土梁的加固 英文版.pdf_第2頁](http://file.renrendoc.com/FileRoot1/2013-11/17/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d2.gif)
![外文翻譯--應(yīng)用新型延性纖維增強(qiáng)聚合物對混凝土梁的加固 英文版.pdf_第3頁](http://file.renrendoc.com/FileRoot1/2013-11/17/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d3.gif)
![外文翻譯--應(yīng)用新型延性纖維增強(qiáng)聚合物對混凝土梁的加固 英文版.pdf_第4頁](http://file.renrendoc.com/FileRoot1/2013-11/17/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d4.gif)
![外文翻譯--應(yīng)用新型延性纖維增強(qiáng)聚合物對混凝土梁的加固 英文版.pdf_第5頁](http://file.renrendoc.com/FileRoot1/2013-11/17/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d/ebe0e0a7-0dd1-4c20-8257-4724a0e6cf8d5.gif)
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
692ACIStructuralJournal/September-October2002ACIStructuralJournal,V.99,No.5,September-October2002.MSNo.01-349receivedOctober23,2001,andreviewedunderInstitutepublicationpolicies.Copyright2002,AmericanConcreteInstitute.Allrightsreserved,includ-ingthemakingofcopiesunlesspermissionisobtainedfromthecopyrightproprietors.PertinentdiscussionwillbepublishedintheJuly-August2003ACIStructuralJournalifreceivedbyMarch1,2003.ACISTRUCTURALJOURNALTECHNICALPAPERAninnovative,uniaxialductilefiber-reinforcedpolymer(FRP)fabrichasbeenresearched,developed,andmanufactured(intheStructuralTestingCenteratLawrenceTechnologicalUniversity)forstrengtheningstructures.Thefabricisahybridoftwotypesofcarbonfibersandonetypeofglassfiber,andhasbeendesignedtoprovideapseudo-ductilebehaviorwithalowyield-equivalentstrainvalueintension.Theeffectivenessandductilityofthedevelopedfabrichasbeeninvestigatedbystrengtheningandtestingeightconcretebeamsunderflexuralload.Similarbeamsstrengthenedwithcurrentlyavailableuniaxialcarbonfibersheets,fabrics,andplateswerealsotestedtocomparetheirbehaviorwiththosestrengthenedwiththedevelopedfabric.Thefabrichasbeendesignedsothatithasthepotentialtoyieldsimultaneouslywiththesteelreinforcementofstrengthenedbeamsandhence,aductileplateausimilartothatforthenonstrengthenedbeamscanbeachieved.Thebeamsstrengthenedwiththedevelopedfabricexhibitedhigheryieldloadsandachievedhigherductilityindexesthanthosestrengthenedwiththecurrentlyavailablecarbonfiberstrengtheningsystems.Thedevelopedfabricshowsamoreeffectivecontributiontothestrengtheningmechanism.Keywords:concrete;ductility;fiberreinforcement;flexure.INTRODUCTIONTheuseofexternallybondedfiber-reinforcedpolymer(FRP)sheetsandstripshasrecentlybeenestablishedasaneffectivetoolforrehabilitatingandstrengtheningreinforcedconcretestructures.SeveralexperimentalinvestigationshavebeenreportedonthebehaviorofconcretebeamsstrengthenedforflexureusingexternallybondedFRPplates,sheets,orfabrics.SaadatmaneshandEhsani(1991)examinedthebehaviorofconcretebeamsstrengthenedforflexureusingglassfiber-reinforcedpolymer(GFRP)plates.Ritchieetal.(1991)testedreinforcedconcretebeamsstrengthenedforflexureusingGFRP,carbonfiber-reinforcedpolymer(CFRP),andG/CFRPplates.Graceetal.(1999)andTrian-tafillou(1992)studiedthebehaviorofreinforcedconcretebeamsstrengthenedforflexureusingCFRPsheets.Norris,Saa-datmanesh,andEhsani(1997)investigatedthebehaviorofconcretebeamsstrengthenedusingCFRPunidirectionalsheetsandCFRPwovenfabrics.Inalloftheseinvestigations,thestrengthenedbeamsshowedhigherultimateloadscom-paredtothenonstrengthenedones.Oneofthedrawbacksexperiencedbymostofthesestrengthenedbeamswasacon-siderablelossinbeamductility.Anexaminationoftheload-deflectionbehaviorofthebeams,however,showedthatthemajorityofthegainedincreaseinloadwasexperiencedaf-tertheyieldofthesteelreinforcement.Inotherwords,asignificantincreaseinultimateloadwasexperiencedwithoutmuchincreaseinyieldload.Hence,asignificantincreaseinservicelevelloadscouldhardlybegained.Apartfromtheconditionoftheconcreteelementbeforestrengthening,thesteelreinforcementcontributessignificantlytotheflexuralresponseofthestrengthenedbeam.Unfortunately,availableFRPstrengtheningmaterialshaveabehaviorthatisdifferentfromsteel.AlthoughFRPmaterialshavehighstrengths,mostofthemstretchtorelativelyhighstrainvaluesbeforeprovidingtheirfullstrength.BecausesteelhasarelativelylowyieldstrainvaluewhencomparedwiththeultimatestrainsofmostoftheFRPmaterials,thecontri-butionofboththesteelandthestrengtheningFRPmaterialsdifferwiththedeformationofthestrengthenedelement.Asaresult,steelreinforcementmayyieldbeforethestrengthenedelementgainsanymeasurableloadincrease.SomedesignersplaceagreaterFRPcrosssection,whichgenerallyincreasesthecostofthestrengthening,toprovideameasurablecontri-bution,evenwhendeformationsarelimited(beforetheyieldofsteel).Debondingofthestrengtheningmaterialfromthesurfaceoftheconcrete,however,ismorelikelytohappeninthesecasesduetohigherstressconcentrations.Debondingisoneofthenondesiredbrittlefailuresinvolvedwiththistechniqueofstrengthening.Althoughusingsomespeciallow-strainfiberssuchasultra-high-moduluscarbonfibersmayappeartobeasolution,itwouldresultinbrittlefailuresduetothefailureoffibers.Theobjectiveofthispaperistointroduceanewpseudo-ductileFRPfabricthathasalowstrainatyieldsothatithasthepotentialtoyieldsimultaneouslywiththesteelreinforcement,yetprovidethedesiredstrengtheninglevel.RESEARCHSIGNIFICANCEFRPshavebeenincreasinglyusedasmaterialsforrehabil-itatingandstrengtheningreinforcedconcretestructures.CurrentlyavailableFRPmaterials,however,lacktheductilityandhavedissimilarbehaviorstosteelreinforcement.Asaresult,thestrengthenedbeamsmayexhibitareducedductility,lackthedesiredstrengtheninglevel,orboth.Thisstudypresentsaninnovativepseudo-ductileFRPstrengtheningfabric.ThefabricprovidesmeasurablyhigheryieldloadsforthestrengthenedbeamsandhelpstoavoidthelossofductilitythatiscommonwiththeuseofcurrentlyavailableFRP.DEVELOPMENTOFHYBRIDFABRICToovercomethedrawbacksmentionedpreviously,aductileFRPmaterialwithlowyieldstrainvalueisneeded.Titleno.99-S71StrengtheningofConcreteBeamsUsingInnovativeDuctileFiber-ReinforcedPolymerFabricbyNabilF.Grace,GeorgeAbdel-Sayed,andWaelF.Ragheb693ACIStructuralJournal/September-October2002LiteraturereviewonhybridizationTodevelopthismaterial,hybridizationfordifferentfiberswasconsidered.Hybridizationofmorethanonetypeoffibrousmaterialswastheinterestofmanymaterialsscienceresearchers.Mostoftheirworkwasconcernedwithcombiningtwotypesoffiberstoenhancethemechanicalpropertiesofeithertypeactingaloneandtoreducethecost.ThishasbeenreportedinseveralpublicationssuchasBunsellandHarris(1974),Philips(1976),MandersandBader(1981),ChowandKelly(1980),andFukudaandChow(1981).HybridizationinterestedstructuralengineersasatooltoovercometheproblemofalackofductilityinFRPreinforcingbars.Nanni,Henneke,andOkamoto(1994)studiedbarsofbraidedaramidfibersaroundasteelcore.TamuzsandTepfers(1995)reportedexperimentalinvestigationsforhybridfiberbarsusingdifferentcombinationsofcarbonandaramidfibers.Somboonsong,Frank,andHarris(1998)developedahybridFRPreinforcingbarusingbraidedaramidfibersaroundacarbonfibercore.Harris,Somboonsong,andFrank(1998)usedthesebarsinreinforcingconcretebeamstoachievethegeneralload-deflectionbehaviorofconcretebeamsreinforcedwithconventionalsteel.DesignconceptandmaterialsTogenerateductility,ahybridizationtechniqueofdifferenttypesoffibershasbeenimplemented.Threefibershavebeenselectedwithadifferentmagnitudeofelongationsatfailure.Figure1showsthestress-straincurvesintensionfortheselectedcompositefibers,andTable1showstheirmechanicalproperties.Thetechniqueisbasedoncombiningthesefiberstogetherandcontrollingthemixtureratiosothatwhentheyareloadedtogetherintension,thefiberswiththelowestelongation(LE)failfirst,allowingastrainrelaxation(anincreaseinstrainwithoutanincreaseinloadforthehybrid).Theremaininghigh-elongation(HE)fibersareproportionedtosustainthetotalloaduptofailure.ThestrainvalueatfailureoftheLEfiberspresentsthevalueoftheyield-equivalentstrainofthehybrid,whiletheHEfiberstrainatfailurepresentsthevalueofultimatestrain.TheloadcorrespondingtofailureofLEfiberspresentstheyield-equivalentloadvalue,andthemaximumloadcarriedbytheHEfibersistheultimateloadvalue.Ultra-high-moduluscarbonfibers(CarbonNo.1)havebeenusedasLEfiberstohaveaslowastrainaspossible,butnotlessthantheyieldstrainofsteel(approximately0.2%forGrade60steel).Ontheotherhand,E-glassfiberswereusedasHEfiberstoprovideashighastrainaspossibletoproduceahigh-ductilityindex(theratiobetweendeformationatfailureanddeformationatyield).High-moduluscarbonfibers(CarbonNo.2)wereselectedasmedium-elongation(ME)fiberstominimizethepossibleloaddropduringthestrainrelaxationthatoccursafterfailureoftheLEfibers,andalsotoprovideagradualloadtransitionfromtheLEfiberstotheHEfibers.Basedonthisconcept,auniaxialfabricwasfabricatedandtestedtocompareitsbehaviorintensionwiththetheoreticalpredictedloadingbehavior.Thetheoreticalbehaviorisbasedontheruleofmixtures,inwhichtheaxialstiffnessofthehybridiscalculatedbyasummationoftherelativestiffnessofeachofitscomponents.Thefabricwasmanufacturedbycombiningdifferentfibersasadjacentyarnsandimpregnatingtheminsideamoldbyanepoxyresin.Figure2showsaphotoofoneofthefabricatedsamples.Wovenglassfibertabswereprovidedatbothendsofthetestcouponstoeliminatestressconcentrationsatendfixturesduringtesting.Thecouponshadathicknessof2mm(0.08in.)andawidthof25.4mmACImemberNabilF.GraceisaprofessorandChairoftheStructuralTestingCenter,DepartmentofCivilEngineering,LawrenceTechnologicalUniversity,Southfield,Mich.HeisamemberofACICommittee440,FiberReinforcedPolymerReinforcement;andJointACI-ASCECommittee343,ConcreteBridgeDesign.Hisresearchinterestsincludetheuseoffiber-reinforcedpolymerinreinforcedandprestressedconcretestructures.GeorgeAbdel-SayedisProfessorEmeritusintheDepartmentofCivilandEnvi-ronmentalEngineering,UniversityofWindsor,Windsor,Ontario,Canada.Hisresearchinterestsincludesoil-structureinteraction.WaelF.RaghebisaresearchassistantintheDepartmentofCivilEngineeringatLawrenceTechnologicalUniversity.HeisaPhDcandidateintheDepartmentofCivilandEnvironmentalEngineering,UniversityofWindsor,Windsor,Ontario,Canada.Fig.1Stress-strainbehaviorofcompositefibersandsteelreinforcingbars.*Compositepropertiesarebasedon60%fibervolumefraction.Table1Mechanicalpropertiesofcompositefibers*FibermaterialDescriptionModulusofelasticity,GPa(Msi)Tensilestrength,MPa(ksi)Failurestrain,%CarbonNo.1Ultra-high-moduluscarbonfibers379(55)1324(192)0.35CarbonNo.2High-moduluscarbonfibers231(33.5)2413(350)0.9to1.0GlassE-glassfibers48(7)1034(150)2.1Fig.2Testsamplefordevelopeduniaxialhybridfabric.Fig.3Resultsoftensiletestsfordevelopedhybridfabric.694ACIStructuralJournal/September-October2002(1in.)andweretestedintensionaccordingtoASTMD3039specifications.Theaverageload-straincurveforfourtestedsamplesisshowninFig.3togetherwiththetheoreticalprediction.Itshouldbenotedthatthebehaviorislinearuptoastrainof0.35%,whentheLEfibersstartedtofail.Atthispoint,thestrainincreasedatafasterratethantheload.Whenthestrainreached0.90%,theMEfibersstartedtofail,resultinginanadditionalincreaseinstrainwithoutasignificantincreaseinload,uptothetotalfailureofthecouponbyfailureoftheHEfibers.Ayield-equivalentload(thefirstpointontheload-straincurvewherethebehaviorbecomesnonlinear)of0.46kN/mmwidth(2.6kips/in.)andanultimateloadof0.78kN/mm(4.4kips/in.)areobserved.BEAMTESTSBeamdetailsThirteenreinforcedconcretebeamswithcross-sectionaldimensionsof152x254mm(6x10in.)andlengthsof2744mm(108in.)werecast.TheflexurereinforcementofthebeamsconsistedoftwoNo.5(16mm)tensionbarsnearthebottom,andtwoNo.3(9.5mm)compressionbarsnearthetop.Toavoidshearfailure,thebeamswereover-reinforcedforshearwithNo.3(9.5mm)closedstirrupsspacedat102mm(4.0in.).Fivebeamswereformedwithroundedcornersof25mm(1in.)radiustofacilitatetheinstallationofthestrengtheningmaterialontheirsidesandbottomfaceswithoutstressconcentrations.Figure4showsthebeamdimensions,reinforcementdetails,supportlocations,andlocationofloadingpoints.ThesteelusedwasGrade60withayieldstrengthof415MPa(60,000psi),whiletheconcretecompressivestrengthatthetimeoftestingthebeamswas55.2MPa(8000psi).StrengtheningmaterialsThedevelopedhybridfabricwasusedtostrengtheneightbeams.Twodifferentthicknessesoffabricwereused.Thefirst(H-system,t=1.0mm)hadathicknessof1.0mm(0.04in.),andthesecond(H-system,t=1.5mm)hadathicknessof1.5mm(0.06in.).Fourotherbeamswerestrengthenedwiththreecurrentlyavailablecarbonfiberstrengtheningmaterials:1)auniaxialcarbonfibersheetwithanultimateloadof0.34kN/mm(1.95kips/in.);2)twolayersofauniaxialcarbonfiberfabricwithanultimateloadof1.31kN/mm(7.5kips/in.)forthetwolayerscombined;and3)apultrudedcarbonfiberplatewithanultimateloadof2.8kN/mm(16kips/in.).Thetestedload-straindiagramsforFig.4Detailsoftestbeams.Fig.5Comparisonbetweencarbonfiberplate,fabric,sheet,anddevelopedhybridfabric(H-System).ACIStructuralJournal/September-October2002695allthesematerialsareshowninFig.5.Table2showsthepropertiesofthestrengtheningmaterials,includingthedevelopedfabric.AdhesivesForthehybridfabric,anepoxyresin(EpoxyA)wasusedtoimpregnatethefibersandasanadhesivebetweenthefabricandtheconcretesurface.Thisepoxyhadanultimatestrainof4.4%toensurethatitwouldnotfailbeforethefailureofthefibers.Forthebeamsstrengthenedwithcarbonfibersheets,plates,andfabric,anepoxyresinwithanultimatestrainof2.0%wasused(EpoxyB).ThemechanicalpropertiesoftheadhesivesprovidedbytheirmanufacturesareshowninTable3.StrengtheningThebeambottomfacesandsidesweresandblastedtoroughenthesurface.Thebeamswerethencleanedwithacetonetoremovedirt.Twostrengtheningconfigurationswereused:1)strengtheningmaterialonthebottomfaceofthebeamonly(BeamGroupA);and2)strengtheningmaterialonthebottomfaceandextendedup152mm(6in.)onbothsidestocoverapproximatelyalltheflexuraltensionportionsofthebeam(BeamGroupB).Thestrengtheningwasinstalledfor2.24m(88in.),centeredalongthelengthofthebeam.Theepoxywasallowedtocureforatleast2weeksbeforethebeamsweretested.Forthebeamsstrengthenedwiththedevelopedhybridfabric(H-system),twobeamswerefabricatedandtestedforeachconfigurationtoverifytheresults.Table4summarizesthetestbeams.InstrumentationTheFRPstrainatmidspanwasmeasuredbythreestraingageslocatedatthebottomfaceofthebeam.ThesteeltensilestrainwasmeasuredbymonitoringthestrainonthesidesurfaceofthebeamatreinforcingbarlevelusingaDEMEC(detachablemechanicalgage)withgagepointsforBeamGroupA,whilestraingageswereusedforBeamGroupB.Themidspandeflectionwasmeasuredusingastringpoten-tiometer.Thebeamswereloadedusingahydrau
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球離網(wǎng)房車行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025-2030全球高脈沖能量皮秒激光器行業(yè)調(diào)研及趨勢分析報(bào)告
- 月齡嬰兒情緒情感與社會性親子活動(dòng)設(shè)計(jì)創(chuàng)造性撫觸游戲講解
- 2025【合同范本】建筑工程設(shè)計(jì)協(xié)議書
- 蔬菜配送合作合同范本
- 分期付款合同模板集錦
- 會簽單合同模板
- 全新對講機(jī)服務(wù)合同下載
- 勞務(wù)出資合伙協(xié)議合同
- 個(gè)人租車租賃合同范本
- 區(qū)域經(jīng)理年終工作總結(jié)匯報(bào)
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標(biāo))
- 初中八年級音樂-勞動(dòng)號子《軍民大生產(chǎn)》
- 中層領(lǐng)導(dǎo)的高績效管理
- 小小銀行家-兒童銀行知識、理財(cái)知識培訓(xùn)
- 機(jī)械基礎(chǔ)知識競賽題庫附答案(100題)
- 閱讀理解特訓(xùn)卷-英語四年級上冊譯林版三起含答案
- 國庫集中支付培訓(xùn)班資料-國庫集中支付制度及業(yè)務(wù)操作教學(xué)課件
- 屋面及防水工程施工(第二版)PPT完整全套教學(xué)課件
- 2023年上海青浦區(qū)區(qū)管企業(yè)統(tǒng)一招考聘用筆試題庫含答案解析
- 2023年高一物理期末考試卷(人教版)
評論
0/150
提交評論