版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第38講 導(dǎo)數(shù)、定積分 一【課標(biāo)要求】1導(dǎo)數(shù)及其應(yīng)用(1)導(dǎo)數(shù)概念及其幾何意義 通過對大量實例的分析,經(jīng)歷由平均變化率過渡到瞬時變化率的過程,了解導(dǎo)數(shù)概念的實際背景,知道瞬時變化率就是導(dǎo)數(shù),體會導(dǎo)數(shù)的思想及其內(nèi)涵;通過函數(shù)圖像直觀地理解導(dǎo)數(shù)的幾何意義(2)導(dǎo)數(shù)的運算 能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導(dǎo)數(shù); 能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如f(ax+b)的導(dǎo)數(shù); 會使用導(dǎo)數(shù)公式表(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 結(jié)合實例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函
2、數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間; 結(jié)合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過三次的多項式函數(shù)最大值、最小值;體會導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。(4)生活中的優(yōu)化問題舉例例如,使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導(dǎo)數(shù)在解決實際問題中的作用(5)定積分與微積分基本定理 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念; 通過實例(如變速運動物體在某段時間內(nèi)的速度與路程的關(guān)系),直觀了解微積分
3、基本定理的含義(6)數(shù)學(xué)文化收集有關(guān)微積分創(chuàng)立的時代背景和有關(guān)人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。具體要求見本標(biāo)準(zhǔn)中數(shù)學(xué)文化的要求。二【命題走向】導(dǎo)數(shù)是高中數(shù)學(xué)中重要的內(nèi)容,是解決實際問題的強有力的數(shù)學(xué)工具,運用導(dǎo)數(shù)的有關(guān)知識,研究函數(shù)的性質(zhì):單調(diào)性、極值和最值是高考的熱點問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運算及導(dǎo)數(shù)的應(yīng)用,也經(jīng)常以解答題形式和其它數(shù)學(xué)知識結(jié)合起來,綜合考察利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,估計2010年高考繼續(xù)以上面的幾種形式考察不會有大的變化:(1)考查形式為:選擇題、填空題、解答題各種題型都
4、會考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結(jié)合,屬于高考的中低檔題;(2)2010年高考可能涉及導(dǎo)數(shù)綜合題,以導(dǎo)數(shù)為數(shù)學(xué)工具考察:導(dǎo)數(shù)的物理意義及幾何意義,復(fù)合函數(shù)、數(shù)列、不等式等知識。定積分是新課標(biāo)教材新增的內(nèi)容,主要包括定積分的概念、微積分基本定理、定積分的簡單應(yīng)用,由于定積分在實際問題中非常廣泛,因而07年的高考預(yù)測會在這方面考察,預(yù)測2010年高考呈現(xiàn)以下幾個特點:(1)新課標(biāo)第1年考察,難度不會很大,注意基本概念、基本性質(zhì)、基本公式的考察及簡單的應(yīng)用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡單運算,屬于中低
5、檔題;(2)定積分的應(yīng)用主要是計算面積,諸如計算曲邊梯形的面積、變速直線運動等實際問題要很好的轉(zhuǎn)化為數(shù)學(xué)模型三【要點精講】1導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。 如果當(dāng)時,有極限,我們就說函數(shù)y=f(x)在點x處可導(dǎo),并把這個極限叫做f(x)在點x處的導(dǎo)數(shù),記作f(x)或y|。即f(x)=。說明:(1)函數(shù)f(x)在點x處可導(dǎo),是指時,有極限。如果不存在極限,就說函數(shù)在點x處不可導(dǎo),或說無導(dǎo)數(shù)(2)是自變量x在x處的改變量,時,而是函數(shù)值的改變量,可以是零。 由導(dǎo)數(shù)的定義可知
6、,求函數(shù)y=f(x)在點x處的導(dǎo)數(shù)的步驟(可由學(xué)生來歸納):(1)求函數(shù)的增量=f(x+)f(x);(2)求平均變化率=;(3)取極限,得導(dǎo)數(shù)f(x)=。2導(dǎo)數(shù)的幾何意義 函數(shù)y=f(x)在點x處的導(dǎo)數(shù)的幾何意義是曲線y=f(x)在點p(x,f(x)處的切線的斜率。也就是說,曲線y=f(x)在點p(x,f(x)處的切線的斜率是f(x)。相應(yīng)地,切線方程為yy=f/(x)(xx)。3常見函數(shù)的導(dǎo)出公式()(C為常數(shù))()()()4兩個函數(shù)的和、差、積的求導(dǎo)法則法則1:兩個函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個函數(shù)的導(dǎo)數(shù)的和(或差),即: (法則2:兩個函數(shù)的積的導(dǎo)數(shù),等于第一個函數(shù)的導(dǎo)數(shù)乘以第二個函
7、數(shù),加上第一個函數(shù)乘以第二個函數(shù)的導(dǎo)數(shù),即:若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù): 法則3兩個函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:=(v0)。形如y=f的函數(shù)稱為復(fù)合函數(shù)。復(fù)合函數(shù)求導(dǎo)步驟:分解求導(dǎo)回代。法則:y|= y| u|5導(dǎo)數(shù)的應(yīng)用(1)一般地,設(shè)函數(shù)在某個區(qū)間可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù);(2)曲線在極值點處切線的斜率為0,極值點處的導(dǎo)數(shù)為0;曲線在極大值點左側(cè)切線的斜率為正,右側(cè)為負;曲線在極小值點左側(cè)切線的斜率為負,右側(cè)為正;(3)一般地,在區(qū)間a,b上連續(xù)的函數(shù)f
8、在a,b上必有最大值與最小值。求函數(shù)在(a,b)內(nèi)的極值; 求函數(shù)在區(qū)間端點的值(a)、(b); 將函數(shù) 的各極值與(a)、(b)比較,其中最大的是最大值,其中最小的是最小值6定積分(1)概念設(shè)函數(shù)f(x)在區(qū)間a,b上連續(xù),用分點ax0x1xi1xixnb把區(qū)間a,b等分成n個小區(qū)間,在每個小區(qū)間xi1,xi上取任一點i(i1,2,n)作和式In(i)x(其中x為小區(qū)間長度),把n即x0時,和式In的極限叫做函數(shù)f(x)在區(qū)間a,b上的定積分,記作:,即(i)x。這里,a與b分別叫做積分下限與積分上限,區(qū)間a,b叫做積分區(qū)間,函數(shù)f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式基
9、本的積分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均為常數(shù))(2)定積分的性質(zhì)(k為常數(shù));(其中acb。(3)定積分求曲邊梯形面積由三條直線xa,xb(ab),x軸及一條曲線yf(x)(f(x)0)圍成的曲邊梯的面積。如果圖形由曲線y1f1(x),y2f2(x)(不妨設(shè)f1(x)f2(x)0),及直線xa,xb(ab)圍成,那么所求圖形的面積SS曲邊梯形AMNBS曲邊梯形DMNC。四【典例解析】題型1:導(dǎo)數(shù)的概念例1已知s=,(1)計算t從3秒到3.1秒 、3.001秒 、 3.0001秒.各段內(nèi)平均速度;(2)求t=3秒是瞬時速度解析:(1)指時間改變
10、量;指時間改變量。其余各段時間內(nèi)的平均速度,事先刻在光盤上,待學(xué)生回答完第一時間內(nèi)的平均速度后,即用多媒體出示,讓學(xué)生思考在各段時間內(nèi)的平均速度的變化情況。(2)從(1)可見某段時間內(nèi)的平均速度隨變化而變化,越小,越接近于一個定值,由極限定義可知,這個值就是時,的極限,V=(6+=3g=29.4(米/秒)。例2求函數(shù)y=的導(dǎo)數(shù)。解析:,=-。點評:掌握切的斜率、 瞬時速度,它門都是一種特殊的極限,為學(xué)習(xí)導(dǎo)數(shù)的定義奠定基礎(chǔ)。題型2:導(dǎo)數(shù)的基本運算例3(1)求的導(dǎo)數(shù);(2)求的導(dǎo)數(shù);(3)求的導(dǎo)數(shù);(4)求y=的導(dǎo)數(shù);(5)求y的導(dǎo)數(shù)解析:(1),(2)先化簡,(3)先使用三角公式進行化簡.(4)
11、y=;(5)yxy*(x)x)*()。點評:(1)求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形對函數(shù)進行化簡,然后求導(dǎo),這樣可以減少運算量,提高運算速度,減少差錯;(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導(dǎo)前利用代數(shù)或三角恒等變形將函數(shù)先化簡,然后進行求導(dǎo)有時可以避免使用商的求導(dǎo)法則,減少運算量例4寫出由下列函數(shù)復(fù)合而成的函數(shù): (1)y=cosu,u=1+ (2)y=lnu, u=lnx解析:(1)y=cos(1+);(2)y=ln(lnx)。點評:通過對y=(3x-2展開求導(dǎo)及按復(fù)合關(guān)系求導(dǎo),直觀的得到=.給出復(fù)合函數(shù)的求導(dǎo)法則,并指導(dǎo)學(xué)生閱讀法則的證明。題型3:導(dǎo)數(shù)的幾何意義例5(1
12、)(2009年廣東卷文)函數(shù)的單調(diào)遞增區(qū)間是( )A. B.(0,3) C.(1,4) D. 答案 D解析 ,令,解得,故選D(2)(2009安徽卷理)已知函數(shù)在R上滿足,則曲線在點處的切線方程是 ( )A. B. C. D. 答案 A解析 由得幾何,即,切線方程,即選A點評:導(dǎo)數(shù)值對應(yīng)函數(shù)在該點處的切線斜率。例6(2009湖南卷文)若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),則函數(shù)在區(qū)間上的圖象可能是( )yababaoxoxybaoxyoxybA B C D解析 因為函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),即在區(qū)間上各點處的斜率是遞增的,由圖易知選A. 注意C中為常數(shù)噢.(2)曲線和在它們交點處的兩條切線與軸所
13、圍成的三角形面積是 。解析:(2)曲線和在它們的交點坐標(biāo)是(1,1),兩條切線方程分別是y=x+2和y=2x1,它們與軸所圍成的三角形的面積是。點評:導(dǎo)數(shù)的運算可以和幾何圖形的切線、面積聯(lián)系在一起,對于較復(fù)雜問題有很好的效果。題型4:借助導(dǎo)數(shù)處理單調(diào)性、極值和最值例7(1)對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x1)0,則必有( )Af(0)f(2)2f(1)(2)函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點( )A1個 B2個 C3個 D 4個(3)2009山東卷文)(本小題滿分12分)已知函數(shù),其中 (1)當(dāng)滿足什么條件時,取得極值?(2)已知,且在區(qū)間上單
14、調(diào)遞增,試用表示出的取值范圍.解: (1)由已知得,令,得,要取得極值,方程必須有解,所以,即, 此時方程的根為,所以 當(dāng)時,x(-,x1)x 1(x1,x2)x2(x2,+)f(x)00f (x)增函數(shù)極大值減函數(shù)極小值增函數(shù)所以在x 1, x2處分別取得極大值和極小值.當(dāng)時, x(-,x2)x 2(x2,x1)x1(x1,+)f(x)00f (x)減函數(shù)極小值增函數(shù)極大值減函數(shù)所以在x 1, x2處分別取得極大值和極小值.綜上,當(dāng)滿足時, 取得極值. (2)要使在區(qū)間上單調(diào)遞增,需使在上恒成立.即恒成立, 所以設(shè),令得或(舍去), 當(dāng)時,當(dāng)時,單調(diào)增函數(shù);當(dāng)時,單調(diào)減函數(shù),所以當(dāng)時,取得最
15、大,最大值為.所以當(dāng)時,此時在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當(dāng)時最大,最大值為,所以綜上,當(dāng)時, ; 當(dāng)時, 【命題立意】:本題為三次函數(shù),利用求導(dǎo)的方法研究函數(shù)的極值、單調(diào)性和函數(shù)的最值,函數(shù)在區(qū)間上為單調(diào)函數(shù),則導(dǎo)函數(shù)在該區(qū)間上的符號確定,從而轉(zhuǎn)為不等式恒成立,再轉(zhuǎn)為函數(shù)研究最值.運用函數(shù)與方程的思想,化歸思想和分類討論的思想解答問題.例8(1)若曲線存在垂直于軸的切線,則實數(shù)的取值范圍是 .解析 解析 由題意該函數(shù)的定義域,由。因為存在垂直于軸的切線,故此時斜率為,問題轉(zhuǎn)化為范圍內(nèi)導(dǎo)函數(shù)存在零點解法1 (圖像法)再將之轉(zhuǎn)化為與存在交點。當(dāng)不符合題意,當(dāng)時,如圖1,數(shù)形結(jié)合可得顯然沒有
16、交點,當(dāng)如圖2,此時正好有一個交點,故有應(yīng)填或是。解法2 (分離變量法)上述也可等價于方程在內(nèi)有解,顯然可得(2)函數(shù)的圖象與x軸所圍成的封閉圖形的面積為A. B. 1 C. 2 D. 根據(jù)定積分的幾何意義結(jié)合圖形可得所求的封閉圖形的面積:,故選A.點評:本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最大值和最小值的基礎(chǔ)知識,以及運用數(shù)學(xué)知識解決實際問題的能力題型5:導(dǎo)數(shù)綜合題例91、已知二次函數(shù),若不等式的解集為C.(1)求集合C;(2)若方程在C上有解,求實數(shù)的取值范圍;(3)記在C上的值域為A,若的值域為B,且,求實數(shù)的取值范圍 解(1) -1分當(dāng)時, -2分當(dāng)時, -3分所以集合 -4分(2) ,令
17、則方程為 -5分當(dāng)時, 在上有解,則 -7分當(dāng)時, 在上有解,則 -9分所以,當(dāng)或時,方程在C上有解,且有唯一解。-10分(3) -11分當(dāng)時,函數(shù)在單調(diào)遞增,所以函數(shù)的值域, , ,解得,即 -13分當(dāng)時,任取,10 若, ,函數(shù)在區(qū)間單調(diào)遞減,:又,所以。-15分20 若,若則須,.于是當(dāng)時,,;-16分當(dāng)時,,因此函數(shù)在單調(diào)遞增;在單調(diào)遞減. 在達到最小值要使,則,因為,所以使得的無解。-18分綜上所述:的取值范圍是:點評:該題是導(dǎo)數(shù)與平面向量結(jié)合的綜合題。例103、已知函數(shù)上為增函數(shù). (1)求k的取值范圍; (2)若函數(shù)的圖象有三個不同的交點,求實數(shù)k的取值范圍.解:(1)由題意1分
18、因為上為增函數(shù)所以上恒成立,3分即所以5分當(dāng)k=1時,恒大于0,故上單增,符合題意.所以k的取值范圍為k1.6分(2)設(shè)令8分由(1)知k1,當(dāng)k=1時,在R上遞增,顯然不合題意9分當(dāng)k1時,的變化情況如下表:xk(k,1)1(1,+)+00+極大極小11分由于圖象有三個不同的交點,即方程也即有三個不同的實根故需即所以解得綜上,所求k的范圍為.14分點評:該題是數(shù)列知識和導(dǎo)數(shù)結(jié)合到一塊。題型6:導(dǎo)數(shù)實際應(yīng)用題例11(江蘇卷)請您設(shè)計一個帳篷。它下部的形狀是高為1m的正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如右圖所示)。試問當(dāng)帳篷的頂點O到底面中心的距離為多少時,帳篷的體積最大?本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最大值和最小值的基礎(chǔ)知識,以及運用數(shù)學(xué)知識解決實際問題的能力。解析:設(shè)OO1為x m,則由題設(shè)可得正六棱錐底面邊長為(單位:m)。于是底面正六邊形的面積為(單位:m2):。帳篷的體積為(單位:m3):求導(dǎo)數(shù),得;令解得x=-2(不合題意,舍去),x=2。當(dāng)1x2時,,V(x)為增函數(shù);當(dāng)2x0。當(dāng)x=0時,t=0;當(dāng)x=a時,又ds=vdt,故阻力所作的功為:(2)依題設(shè)可知拋物線為凸形,它與x軸的交點的橫坐標(biāo)分別為x1=0,x2=b/a,所以(1)又直線xy=4與拋物線y=ax2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶市主城七校2024-2025學(xué)年高二上學(xué)期期末考試歷史試題(含答案)
- 四川省瀘州市瀘縣第二中學(xué)2024-2025學(xué)年九年級上學(xué)期1月期末考試英語試卷(含答案)
- 湖北省武漢市部分重點中學(xué)2024-2025學(xué)年高二上學(xué)期1月期末英語試題(含答案含聽力原文無音頻)
- 重慶市康德2025屆高三第一次診斷檢測-數(shù)學(xué)試卷答案
- 2024版房產(chǎn)開發(fā)三方協(xié)作協(xié)議模板一
- 2024舞臺道具定制加工及銷售合同3篇
- 2025年度大豆產(chǎn)品綠色包裝與環(huán)保認證服務(wù)合同3篇
- 福建省南平市九三英華高級中學(xué)2021-2022學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析
- 福建省南平市建陽縣徐市中學(xué)2020-2021學(xué)年高一物理上學(xué)期期末試卷含解析
- 2025年度大米出口檢驗檢疫服務(wù)合同范本3篇
- 應(yīng)收帳款管理辦法
- 食品安全分享
- 跨境代運營合同范例
- 小學(xué)六年級數(shù)學(xué)100道題解分數(shù)方程
- 2022年五年級數(shù)學(xué)興趣小組活動記錄
- 閱讀題賒小雞
- Q∕GDW 12127-2021 低壓開關(guān)柜技術(shù)規(guī)范
- YY 0838-2021 微波熱凝設(shè)備
- 鋼管購銷合同
- 中國風(fēng)各類PPT模板15
- engel恩格爾注塑機機操作說明書
評論
0/150
提交評論