單片機(jī)外文文獻(xiàn)和中文翻譯_第1頁
單片機(jī)外文文獻(xiàn)和中文翻譯_第2頁
單片機(jī)外文文獻(xiàn)和中文翻譯_第3頁
單片機(jī)外文文獻(xiàn)和中文翻譯_第4頁
單片機(jī)外文文獻(xiàn)和中文翻譯_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、.Validation and Testing of Design Hardening for Single Event Effects Using the 8051 MicrocontrollerAbstract With the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discu

2、ss the implications of validating these methods for the single event effects (SEE) in the space environment. Topics include the types of tests that are required and the design coverage (i.e., design libraries: do they need validating for each application?). Finally, an 8051 microcontroller core from

3、 NASA Institute of Advanced Microelectronics (IAE) CMOS Ultra Low Power Radiation Tolerant (CULPRiT) design is evaluated for SEE mitigative techniques against two commercial 8051 devices. Index Terms Single Event Effects, Hardened-By-Design, microcontroller, radiation effects.I. INTRODUCTION NASA co

4、nstantly strives to provide the best capture of science while operating in a space radiation environment using a minimum of resources 1,2. With a relatively limited selection of radiation-hardened microelectronic devices that are often two or more generations of performance behind commercial state-o

5、fthe-art technologies, NASAs performance of this task is quite challenging. One method of alleviating this is by the use of commercial foundry alternatives with no or minimally invasive design techniques for hardening. This is often called hardened-by-design (HBD).Building custom-type HBD devices us

6、ing design libraries and automated design tools may provide NASA the solution it needs to meet stringent science performance specifications in a timely, cost-effective, and reliable manner. However, one question still exists: traditional radiation-hardened devices have lot and/or wafer radiation qua

7、lification tests performed; what types of tests are required for HBD validation?II. TESTING HBD DEVICES CONSIDERATIONS Test methodologies in the United States exist to qualify individual devices through standards and organizations such as ASTM, JEDEC, and MIL-STD- 883. Typically, TID (Co-60) and SEE

8、 (heavy ion and/or proton) are required for device validation. So what is unique to HBD devices? As opposed to a “regular” commercial-off-the-shelf (COTS) device or application specific integrated circuit (ASIC) where no hardening has been performed, one needs to determine how validated is the desig

9、n library as opposed to determining the device hardness. That is, by using test chips, can we “qualify” a future device using the same library? Consider if Vendor A has designed a new HBD library portable to foundries B and C. A test chip is designed, tested, and deemed acceptable. Nine months later

10、 a NASA flight project enters the mix by designing a new device using Vendor As library. Does this device require complete radiation qualification testing? To answer this, other questions must be asked. How complete was the test chip? Was there sufficient statistical coverage of all library elements

11、 to validate each cell? If the new NASA design uses a partially or insufficiently characterized portion of the design library, full testing might be required. Of course, if part of the HBD was relying on inherent radiation hardness of a process, some of the tests (like SEL in the earlier example) ma

12、y be waived. Other considerations include speed of operation and operating voltage. For example, if the test chip was tested statically for SEE at a power supply voltage of 3.3V, is the data applicable to a 100 MHz operating frequency at 2.5V? Dynamic considerations (i.e., nonstatic operation) inclu

13、de the propagated effects of Single Event Transients (SETs). These can be a greater concern at higher frequencies. The point of the considerations is that the design library must be known, the coverage used during testing is known, the test application must be thoroughly understood and the character

14、istics of the foundry must be known. If all these are applicable or have been validated by the test chip, then no testing may be necessary. A task within NASAs Electronic Parts and Packaging (NEPP) Program was performed to explore these types of considerations.III. HBD TECHNOLOGY EVALUATION USING TH

15、E 8051 MICROCONTROLLER With their increasing capabilities and lower power consumption, microcontrollers are increasingly being used in NASA and DOD system designs. There are existing NASA and DoD programs that are doing technology development to provide HBD. Microcontrollers are one such vehicle tha

16、t is being investigated to quantify the radiation hardness improvement. Examples of these programs are the 8051 microcontroller being developed by Mission Research Corporation (MRC) and the IAE (the focus of this study). As these HBD technologies become available, validation of the technology, in th

17、e natural space radiation environment, for NASAs use in spaceflight systems is required. The 8051 microcontroller is an industry standard architecture that has broad acceptance, wide-ranging applications and development tools available. There are numerous commercial vendors that supply this controll

18、er or have it integrated into some type of system-on-a-chip structure. Both MRC and IAE chose this device to demonstrate two distinctly different technologies for hardening. The MRC example of this is to use temporal latches that require specific timing to ensure that single event effects are minimi

19、zed. The IAE technology uses ultra low power, and layout and architecture HBD design rules to achieve their results. These are fundamentally different than the approach by Aeroflex-United Technologies Microelectronics Center (UTMC), the commercial vendor of a radiation hardened 8051, that built thei

20、r 8051 microcontroller using radiation hardened processes. This broad range of technology within one device structure makes the 8051an ideal vehicle for performing this technology evaluation. The objective of this work is the technology evaluation of the CULPRiT process 3 from IAE. The process has b

21、een baselined against two other processes, the standard 8051 commercial device from Intel and a version using state-of-the-art processing from Dallas Semiconductor. By performing this side-by-side comparison, the cost benefit, performance, and reliability trade study can be done. In the performance

22、of the technology evaluation, this task developed hardware and software for testing microcontrollers. A thorough process was done to optimize the test process to obtain as complete an evaluation as possible. This included taking advantage of the available hardware and writing software that exercised

23、 the microcontroller such that all substructures of the processor were evaluated. This process is also leading to a more complete understanding of how to test complex structures, such as microcontrollers, and how to more efficiently test these structures in the future.IV. TEST DEVICESThree devices w

24、ere used in this test evaluation. The first is the NASA CULPRiT device, which is the primary device to be evaluated. The other two devices are two versions of a commercial 8051, manufactured by Intel and Dallas Semiconductor, respectively.The Intel devices are the ROMless, CMOS version of the classi

25、c 8052 MCS-51 microcontroller. They are rated for operation at +5V, over a temperature range of 0 to 70 C and at a clock speeds of 3.5 MHz to 24 MHz. They are manufactured in Intels P629.0 CHMOS III-E process. The Dallas Semiconductor devices are similar in that they are ROMless 8052 microcontroller

26、s, but they are enhanced in various ways. They are rated for operation from 4.25 to 5.5 Volts over 0 to 70 C at clock speeds up to 25 MHz. They have a second full serial port built in, seven additional interrupts, a watchdog timer, a power fail reset, dual data pointers and variable speed peripheral

27、 access. In addition, the core is redesigned so that the machine cycle is shortened for most instructions, resulting in an effective processing ability that is roughly 2.5 times greater (faster) than the standard 8052 device. None of these features, other than those inherent in the device operation,

28、 were utilized in order to maximize the similarity between the Dallas and Intel test codes. The CULPRiT technology device is a version of the MSC-51 family compatible C8051 HDL core licensed from the Ultra Low Power (ULP) process foundry. The CULPRiT technology C8051 device is designed to operate at

29、 a supply voltage of 500 mV and includes an on-chip input/output signal level-shifting interface with conventional higher voltage parts. The CULPRiT C8051 device requires two separate supply voltages; the 500 mV and the desired interface voltage. The CULPRiT C8051 is ROMless and is intended to be in

30、struction set compatible with the MSC-51 family.V. TEST HARDWARE The 8051 Device Under Test (DUT) was tested as a component of a functional computer. Aside from DUT itself, the other componentsof the DUT computer were removed from the immediate area of the irradiation beam. A small card (one per DUT

31、 package type) with a unique hard-wired identifier byte contained the DUT, its crystal, and bypass capacitors (and voltage level shifters for the CULPRiT DUTs). This DUT Board was connected to the Main Board by a short 60-conductor ribbon cable. The Main Board had all other components required to co

32、mplete the DUT Computer, including some which nominally are not necessary in some designs (such as external RAM, external ROM and address latch). The DUT Computer and the Test Control Computer were connected via a serial cable and communications were established between the two by the Controller (th

33、at runs custom designed serial interface software). This Controller software allowed for commanding of the DUT, downloading DUT Code to the DUT, and real-time error collection from the DUT during and post irradiation. A 1 Hz signal source provided an external watchdog timing signal to the DUT, whose

34、 watchdog output was monitored via an oscilloscope. The power supply was monitored to provide indication of latchup.VI. TEST SOFTWARE The 8051 test software concept is straightforward. It was designed to be a modular series of small test programs each exercising a specific part of the DUT. Since eac

35、h test was stand alone, they were loaded independently of each other for execution on the DUT. This ensured that only the desired portion of the 8051 DUT was exercised during the test and helped pinpoint location of errors that occur during testing. All test programs resided on the controller PC unt

36、il loaded via the serial interface to the DUT computer. In this way, individual tests could have been modified at any time without the necessity of burning PROMs. Additional tests could have also been developed and added without impacting the overall test design. The only permanent code, which was r

37、esident on the DUT, was the boot code and serial code loader routines that established communications between the controller PC and the DUT.All test programs implemented: An external Universal Asynchronous Receive and Transmit device (UART) for transmission of error information and communication to

38、controller computer. An external real-time clock for data error tag. A watchdog routine designed to provide visual verification of 8051 health and restart test code if necessary. A foul-up routine to reset program counter if it wanders out of code space. An external telemetry data storage memory to

39、provide backup of data in the event of an interruption in data transmission. The brief description of each of the software tests used is given below. It should be noted that for each test, the returned telemetry (including time tag) was sent to both the test controller and the telemetry memory, givi

40、ng the highest reliability that all data is captured. Interrupt This test used 4 of 6 available interrupt vectors (Serial, External, Timer0 Overflow, and Timer1 Overflow) to trigger routines that sequentially modified a value in the accumulator which was periodically compared to a known value. Unexp

41、ected values were transmitted with register information. Logic This test performed a series of logic and math computations and provided three types of error identifications: 1) addition/subtraction, 2) logic and 3) multiplication/division. All miscompares of computations and expected results were tr

42、ansmitted with other relevant register information. Memory This test loaded internal data memory at locations D:0x20 through D:0xff (or D:0x20 through D:0x080 for the CULPRiT DUT), indirectly, with an 0x55 pattern. Compares were performed continuously and miscompares were corrected while error infor

43、mation and register values were transmitted. Program Counter -The program counter was used to continuously fetch constants at various offsets in the code. Constants were compared with known values and miscompares were transmitted along with relevant register information. Registers This test loaded e

44、ach of four (0,1,2,3) banks of general-purpose registers with either 0xAA (for banks 0 and 2) or 0x55 (for banks 1 and 3). The pattern was alternated in order to test the Program Status Word (PSW) special function register, which controls general-purpose register bank selection. General-purpose regi

45、ster banks were then compared with their expected values. All miscompares were corrected and error information was transmitted. Special Function Registers (SFR) This test used learned static values of 12 out 21 available SFRs and then constantly compared the learned value with the current one. Misco

46、mpares were reloaded with learned value and error information was transmitted. Stack This test performed arithmetic by pushing and popping operands on the stack. Unexpected results were attributed to errors on the stack or to the stack pointer itself and were transmitted with relevant register infor

47、mation.VII. TEST METHODOLOGY The DUT Computer booted by executing the instruction code located at address 0x0000. Initially, the device at this location was an EPROM previously loaded with Boot/Serial Loader code. This code initialized the DUT Computer and interface through a serial connection to th

48、e controlling computer, the Test Controller. The DUT Computer downloaded Test Code and put it into Program Code RAM (located on the Main Board of the DUT Computer). It then activated a circuit which simultaneously performed two functions: held the DUT reset line active for some time (10 ms); and, re

49、mapped the Test Code residing in the Program Code RAM to locate it to address 0x0000 (the EPROM will no longer be accessible in the DUT Computers memory space). Upon awaking from the reset, the DUT computer again booted by executing the instruction code at address 0x0000, except this time that code

50、was not be the Boot/Serial Loader code but the Test Code. The Test Control Computer always retained the ability to force the reset/remap function, regardless of the DUT Computers functionality. Thus, if the test ran without a Single Event Functional Interrupt (SEFI) either the DUT Computer itself or

51、 the Test Controller could have terminated the test and allowed the post-test functions to be executed. If a SEFI occurred, the Test Controller forced a reboot into Boot/Serial Loader code and then executed the post-test functions. During any test of the DUT, the DUT exercised a portion of its funct

52、ionality (e.g., Register operations or Internal RAM check, or Timer operations) at the highest utilization possible, while making a minimal periodic report to the Test Control Computer to convey that the DUT Computer was still functional. If this report ceased, the Test Controller knew that a SEFI h

53、ad occurred. This periodic data was called telemetry. If the DUT encountered an error that was not interrupting the functionality (e.g., a data register miscompare) it sent a more lengthy report through the serial port describing that error, and continued with the test.VIII. DISCUSSIONA. Single Even

54、t Latchup The main argument for why latchup is not an issue for the CULPRiT devices is that the operating voltage of 0.5 volts should be below the holding voltage required for latchup to occur. In addition to this, the cell library used also incorporates the heavy dual guard-barring scheme 4. This s

55、cheme has been demonstrated multiple times to be very effective in rendering CMOS circuits completely immune to SEL up to test limits of 120 MeV-cm2/mg. This is true in circuits operating at 5, 3.3, and 2.5 Volts, as well as the 0.5 Volt CULPRiT circuits. In one case, a 5 Volt circuit fabricated on

56、noncircuits wafers even exhibited such SEL immunity.B. Single Event Upset The primary structure of the storage unit used in the CULPRiT devices is the Single Event Resistant Topology (SERT) 5. Given the SERT cell topology and a single upset node assumption, it is expected that the SERT cell will be

57、completely immune to SEUs occurring internal to the memory cell itself. Obviously there are other things going on. The CULPRiT 8051 results reported here are quite similar to some results obtained with a CULPRiT CCSDS lossless compression chip (USES) 6. The CULPRiT USES was synthesized using exactly

58、 the same tools and library as the CULPRiT 8051. With the CULPRiT USES, the SEU cross section data 7 was taken as a function of frequency at two LET values, 37.6 and 58.5 MeV-cm2/mg. In both cases the data fit well to a linear model where cross section is proportional to clock. In the LET 37.6 case,

59、 the zero frequency intercept occurred essentially at the zero cross section point, indicating that virtually all of these SEUs are captured SETs from the combinational logic. The LET 58.5 data indicated that the SET (frequency dependent) component is sitting on top of a dc-bias component presumably a second upset mechanism is occurring internal to the SERT cells only at a second, higher

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論