版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、光與影 第二章 點(diǎn)、直線、平面的投影 目錄目錄 投影的基本知識(shí)投影的基本知識(shí) 點(diǎn)的投影點(diǎn)的投影 直線的投影直線的投影 平面的投影平面的投影 投影變換投影變換 平面直線的相對(duì)位置平面直線的相對(duì)位置 第一節(jié)第一節(jié) 投影的基本知識(shí)投影的基本知識(shí) 在日常生活中看到這樣一些現(xiàn)象:在日常生活中看到這樣一些現(xiàn)象: 物體在燈光或日光照射下,會(huì)在地面、墻面或其物體在燈光或日光照射下,會(huì)在地面、墻面或其 它物體的表面上產(chǎn)生影子,并能在某種程度上顯示出它物體的表面上產(chǎn)生影子,并能在某種程度上顯示出 物體的形狀和大小,并隨光線照射方向的不同而變化。物體的形狀和大小,并隨光線照射方向的不同而變化。 投影的方法就是人們從
2、這些自然現(xiàn)象中抽象出來(lái)的。投影的方法就是人們從這些自然現(xiàn)象中抽象出來(lái)的。 1、投影的形成、投影的形成 H 光線光線 影子影子 光線光線 投影投影 H 投影面投影面 投射線投射線 規(guī)定規(guī)定:影子落在一個(gè)平面影子落在一個(gè)平面 上,且光線可穿透物體,上,且光線可穿透物體, 使得所產(chǎn)生的影子不象真使得所產(chǎn)生的影子不象真 是影子那樣黑色一片,而是影子那樣黑色一片,而 能在影子范圍內(nèi)有線條來(lái)能在影子范圍內(nèi)有線條來(lái) 顯示物體的完整形象。顯示物體的完整形象。 應(yīng)用通過(guò)物體的一組選定的直線,在一個(gè)選定應(yīng)用通過(guò)物體的一組選定的直線,在一個(gè)選定 的面上形成的圖形,稱(chēng)為該物體在該面上的的面上形成的圖形,稱(chēng)為該物體在該
3、面上的投影投影。 2、投影的分類(lèi)投影的分類(lèi) 按照投射線之間的關(guān)系和對(duì)投影面的方按照投射線之間的關(guān)系和對(duì)投影面的方 向不同向不同 投投 影影 中心投影中心投影 平行投影平行投影 正投影正投影 斜投影斜投影 中心投影法中心投影法 投射中心、物體、投影面三者之間投射中心、物體、投影面三者之間 的相對(duì)距離對(duì)投影的大小有影響。的相對(duì)距離對(duì)投影的大小有影響。 度量性較差度量性較差 投射線投射線 投影中心投影中心 物體物體 投影面投影面 投影投影 物體位置改物體位置改 變,投影大變,投影大 小也改變小也改變 這種投射線這種投射線 集中于一點(diǎn)時(shí)集中于一點(diǎn)時(shí) 的投影稱(chēng)為中的投影稱(chēng)為中 心投影心投影。 2、投影的
4、分類(lèi)投影的分類(lèi) 按照投射線之間的關(guān)系和對(duì)投影面的方按照投射線之間的關(guān)系和對(duì)投影面的方 向不同向不同 平行投影平行投影 正投影正投影 斜投影斜投影 投射線垂直于投射線垂直于 投影面時(shí)的投影投影面時(shí)的投影 稱(chēng)為正投影。稱(chēng)為正投影。 投射線傾斜于投射線傾斜于 投影面時(shí)的平行投影面時(shí)的平行 投影稱(chēng)為斜投影。投影稱(chēng)為斜投影。 2、投影的分類(lèi)投影的分類(lèi)平行投影平行投影 投射線垂直于投射線垂直于 投影面時(shí)的投影投影面時(shí)的投影 稱(chēng)為正投影。稱(chēng)為正投影。 S 1.1.正投影正投影 S H A B C a b c 2、投影的分類(lèi)投影的分類(lèi)平行投影平行投影 投射線傾斜于投射線傾斜于 投影面時(shí)的平行投影面時(shí)的平行 投
5、影稱(chēng)為斜投影。投影稱(chēng)為斜投影。 H 2.2.斜投影斜投影 90 S S A B C a b c 平行投影法平行投影法 投影大小與物體和投影面之間的距離無(wú)關(guān)。投影大小與物體和投影面之間的距離無(wú)關(guān)。 度量性較好度量性較好 工程圖樣多數(shù)采用正投影法繪制。工程圖樣多數(shù)采用正投影法繪制。 投射線互相平行投射線互相平行 且垂直于投影面且垂直于投影面 斜角投影法斜角投影法 投射線互相平行投射線互相平行 且傾斜于投影面且傾斜于投影面 直角(正)投影法直角(正)投影法 即即:正投影法正投影法 3、 平行投影的特性平行投影的特性 1.真實(shí)性真實(shí)性 當(dāng)線段或平面平行于投影面時(shí),其平行投影反當(dāng)線段或平面平行于投影面時(shí)
6、,其平行投影反 映實(shí)長(zhǎng)或?qū)嵭?。這種投影性質(zhì)稱(chēng)為真實(shí)性。映實(shí)長(zhǎng)或?qū)嵭巍_@種投影性質(zhì)稱(chēng)為真實(shí)性。 A a b B B A C a c b H H 3、平行投影的特性平行投影的特性 2.積聚性積聚性 當(dāng)直線或平面平行于投射線時(shí),(在正投影時(shí),則垂當(dāng)直線或平面平行于投射線時(shí),(在正投影時(shí),則垂 直于投影面),則直線的平行投影積聚為一點(diǎn);平面的平直于投影面),則直線的平行投影積聚為一點(diǎn);平面的平 行投影積聚為一條直線。這種性質(zhì)稱(chēng)為積聚性。行投影積聚為一條直線。這種性質(zhì)稱(chēng)為積聚性。 A a(b) B H B A C H c a b H 3、 平行投影的特性平行投影的特性 3.類(lèi)似性類(lèi)似性 當(dāng)直線或平面傾斜
7、于投影面時(shí),則直線的正投影為小當(dāng)直線或平面傾斜于投影面時(shí),則直線的正投影為小 于實(shí)長(zhǎng)的直線,平面的正投影為小于實(shí)形的平面圖形,如于實(shí)長(zhǎng)的直線,平面的正投影為小于實(shí)形的平面圖形,如 三角形仍投射成三角形。這種性質(zhì)稱(chēng)為類(lèi)似性。三角形仍投射成三角形。這種性質(zhì)稱(chēng)為類(lèi)似性。 b c a d H A B B C D A a b 3、 平行投影的特性平行投影的特性 4從屬性從屬性 點(diǎn)在直線上,點(diǎn)的投影一定在該直線的同面投影上。點(diǎn)在直線上,點(diǎn)的投影一定在該直線的同面投影上。 這種性質(zhì)稱(chēng)為從屬性。這種性質(zhì)稱(chēng)為從屬性。 5 5定比性定比性 直線上兩線段上的長(zhǎng)度之比,等于它們的平行投影的直線上兩線段上的長(zhǎng)度之比,等
8、于它們的平行投影的 長(zhǎng)度之比,這種性質(zhì)稱(chēng)為定比性。長(zhǎng)度之比,這種性質(zhì)稱(chēng)為定比性。 若若: K在在AB上上 則則: k在在 ab上上 AK:KB=ak:kb a b K A B H k 3、平行投影的特性平行投影的特性 6平行性平行性 相互平行的直線在同一投影面上的平行投影仍然相互相互平行的直線在同一投影面上的平行投影仍然相互 平行,且空間線段的長(zhǎng)度之比等于它們的同面投影的長(zhǎng)度平行,且空間線段的長(zhǎng)度之比等于它們的同面投影的長(zhǎng)度 之比,這種性質(zhì)稱(chēng)為平行性。之比,這種性質(zhì)稱(chēng)為平行性。 若若 ABCD 則則 abcd a c b d a c b f e d H H A C D B A B C D F
9、E 第二節(jié)第二節(jié) 點(diǎn)的投影點(diǎn)的投影 空間點(diǎn)空間點(diǎn)A A的單面投影的單面投影 H A a 由單面投影定空間點(diǎn)的位置由單面投影定空間點(diǎn)的位置 H a C B A 只根據(jù)點(diǎn)在一個(gè)投影面上的投影,不能確定該點(diǎn)只根據(jù)點(diǎn)在一個(gè)投影面上的投影,不能確定該點(diǎn) 在空間的位置。在空間的位置。 分角的概念分角的概念 中途返回請(qǐng)按“ESC” 鍵 我國(guó)采我國(guó)采 用第一用第一 分角分角 H H W W V V 一、三投影面體系一、三投影面體系 正立投影面(簡(jiǎn)稱(chēng)正正立投影面(簡(jiǎn)稱(chēng)正 面用面用V V表示)表示) 水平投影面(簡(jiǎn)稱(chēng)水水平投影面(簡(jiǎn)稱(chēng)水 平面用平面用H H表示)表示) 側(cè)立投影面(簡(jiǎn)稱(chēng)側(cè)側(cè)立投影面(簡(jiǎn)稱(chēng)側(cè) 面用面
10、用W W表示)表示) O O X X Z Z OXOX軸軸 V V面與面與H H面的交線面的交線 OZOZ軸軸 V V面與面與W W面的交線面的交線 OYOY軸軸 H H面與面與W W面的交線面的交線 三個(gè)投影面三個(gè)投影面 互相垂直互相垂直 Y Y 原點(diǎn)原點(diǎn)O O X X Y Y Z Z O O V V H H W W 向后向后旋轉(zhuǎn)旋轉(zhuǎn) 90 向下旋轉(zhuǎn)向下旋轉(zhuǎn)90 不動(dòng)不動(dòng) 注意:注意: OY軸一分為軸一分為 二:二: YH、Yw 三、投影面展開(kāi)三、投影面展開(kāi) W W H H V V O O X X Z Z Y Y 二、空間點(diǎn)在三個(gè)投影面上的投影二、空間點(diǎn)在三個(gè)投影面上的投影 a 正面投影正面
11、投影 a 水平投影水平投影 a 側(cè)面投影側(cè)面投影 a a a A A 規(guī)定規(guī)定: 空間點(diǎn)空間點(diǎn)-用大寫(xiě)字母表用大寫(xiě)字母表 示。示。 投影點(diǎn)投影點(diǎn)-用相應(yīng)小寫(xiě)字用相應(yīng)小寫(xiě)字 母表示。母表示。 X X Y Y Z Z O O V V H H W W A A a a a 向后向后旋轉(zhuǎn)旋轉(zhuǎn) 90 向下旋轉(zhuǎn)向下旋轉(zhuǎn)90 不動(dòng)不動(dòng) 注意:注意: OY軸一分為軸一分為 二:二: YH、Yw 三、投影面展開(kāi)三、投影面展開(kāi) 45 點(diǎn)在三投影面體系中的投影點(diǎn)在三投影面體系中的投影 H V OX a a Z aX az a” W YH YW 帶邊框的三面投影圖帶邊框的三面投影圖 O X a a Z aX az a”
12、 YH YW aYH aYW 去邊框的三面投影圖去邊框的三面投影圖 點(diǎn)的三面投影規(guī)律點(diǎn)的三面投影規(guī)律 (1 1)點(diǎn)的水平投影和正面投影的連線垂直于)點(diǎn)的水平投影和正面投影的連線垂直于OXOX軸軸 (aaOX) ) (2 2)點(diǎn)的正面投影和側(cè)面投影的連線垂直于)點(diǎn)的正面投影和側(cè)面投影的連線垂直于OZOZ軸軸 (aa”O(jiān)Z) ) H V O X A a a W Y Z a” ax ay az 45 O X a a Z aX az a” YH YW aYH aYW 點(diǎn)的三面投影規(guī)律點(diǎn)的三面投影規(guī)律 (3)(3)各投影到投影軸的距離,等于該點(diǎn)到通過(guò)該軸的各投影到投影軸的距離,等于該點(diǎn)到通過(guò)該軸的 相鄰
13、投影面的距離。相鄰?fù)队懊娴木嚯x。( (也等于空間點(diǎn)到投影面的距離也等于空間點(diǎn)到投影面的距離) ) a ax = a az =A 到到V 面面的距離的距離 a ax= a aYW =A 到到H 面面的距離的距離 a az = aaYH =A 到到W 面面的距離的距離 H V O X A a a W Y Z a” ax ay az O X a a Z ax az a” YW aYH aYW YH 點(diǎn)的三面投影規(guī)律點(diǎn)的三面投影規(guī)律 【例2-1】已知點(diǎn)已知點(diǎn)A的的水平投影水平投影a和和正面投影正面投影a , ,求側(cè)面投影求側(cè)面投影a”。 中途返回請(qǐng)按“ESC” 鍵 aa” a OX Z YW YH 特
14、殊位置的點(diǎn)特殊位置的點(diǎn) 下一頁(yè)下一頁(yè) 特殊位置的點(diǎn)特殊位置的點(diǎn) 1 1投影面上的點(diǎn)投影面上的點(diǎn): 一投影與該點(diǎn)本身重合,另外兩投影在投影軸上。一投影與該點(diǎn)本身重合,另外兩投影在投影軸上。 2 2投影軸上的點(diǎn)投影軸上的點(diǎn): 兩投影重合于該點(diǎn)本身,另外一投影與原點(diǎn)兩投影重合于該點(diǎn)本身,另外一投影與原點(diǎn)O O重合。重合。 3 3一點(diǎn)與原點(diǎn)重合一點(diǎn)與原點(diǎn)重合:三個(gè)投影亦均與原點(diǎn)重合。:三個(gè)投影亦均與原點(diǎn)重合。 H V O X C B b W Y Z Dddd” b” b c c” OX Z YH YW bb” cc” c c ddd” 點(diǎn)的投影與坐標(biāo)的關(guān)系點(diǎn)的投影與坐標(biāo)的關(guān)系 H V A a a W
15、Y Z a” aX ay az O X A點(diǎn)到點(diǎn)到W W面的距離面的距離( (Aa”)=A點(diǎn)的點(diǎn)的x坐標(biāo)(坐標(biāo)(Oax x) ) A點(diǎn)到點(diǎn)到V V面的距離面的距離( (Aa)=A點(diǎn)的點(diǎn)的y坐標(biāo)(坐標(biāo)(Oay y) ) A點(diǎn)到點(diǎn)到H面的距離面的距離( (Aa)=)=A點(diǎn)的點(diǎn)的z坐標(biāo)(坐標(biāo)(Oaz z) ) O X a a Z az aX a” YH YW aYH aYW X Z Y y yx x z z 后后前前 后后 前前 左左右右 a a a A b b b B X Y Z Z YH X YW b b aa” b” a 兩點(diǎn)的相對(duì)位置兩點(diǎn)的相對(duì)位置 是指平行于投影軸是指平行于投影軸X、Y、Z
16、 的左右、前后和上下的相對(duì)關(guān)系。的左右、前后和上下的相對(duì)關(guān)系。 X值大的點(diǎn)值大的點(diǎn)在左在左 Y值大的點(diǎn)值大的點(diǎn)在前在前 Z值大的點(diǎn)值大的點(diǎn)在上在上 B點(diǎn)在點(diǎn)在A點(diǎn)的左邊點(diǎn)的左邊 A點(diǎn)在點(diǎn)在B點(diǎn)的前邊點(diǎn)的前邊 A點(diǎn)在點(diǎn)在B點(diǎn)的上邊點(diǎn)的上邊 左左右右 上上 下下 上上 下下 第三節(jié)第三節(jié) 兩點(diǎn)的相對(duì)位置和重影點(diǎn)兩點(diǎn)的相對(duì)位置和重影點(diǎn) 兩點(diǎn)的相對(duì)距離,并非指兩點(diǎn)的相對(duì)距離,并非指 兩點(diǎn)間的真實(shí)距離,而是指平兩點(diǎn)間的真實(shí)距離,而是指平 行行 X、Y、Z軸的距離,即到軸的距離,即到W、 V和和H面的距離差面的距離差, ,即:即: 一、兩點(diǎn)的相對(duì)距離一、兩點(diǎn)的相對(duì)距離 坐標(biāo)差:坐標(biāo)差: X(長(zhǎng)度差)(長(zhǎng)度
17、差) Y(寬度差)(寬度差) Z(高度差)(高度差) 二、重影點(diǎn)及可見(jiàn)性重影點(diǎn)及可見(jiàn)性 兩點(diǎn)位于某一投影面的兩點(diǎn)位于某一投影面的同同 一條投射線上一條投射線上,則它們?cè)谶@,則它們?cè)谶@ 一個(gè)投影面上的投影互相重一個(gè)投影面上的投影互相重 疊,該兩點(diǎn)疊,該兩點(diǎn)稱(chēng)為對(duì)該投影面稱(chēng)為對(duì)該投影面 的一對(duì)重影點(diǎn)的一對(duì)重影點(diǎn)。 一個(gè)投影面上重影點(diǎn)的可見(jiàn)性,必須依靠該兩點(diǎn)一個(gè)投影面上重影點(diǎn)的可見(jiàn)性,必須依靠該兩點(diǎn) 在另外的投影面上的投影來(lái)判定。在另外的投影面上的投影來(lái)判定。 規(guī)定規(guī)定:重合投影標(biāo)記為:可見(jiàn)點(diǎn)寫(xiě)在前面,把不:重合投影標(biāo)記為:可見(jiàn)點(diǎn)寫(xiě)在前面,把不 可見(jiàn)點(diǎn)的字母寫(xiě)于后面;或者將不可見(jiàn)點(diǎn)加以圓括號(hào)??梢?jiàn)點(diǎn)
18、的字母寫(xiě)于后面;或者將不可見(jiàn)點(diǎn)加以圓括號(hào)。 H B a(b) A O Z X YH YW V W H Z X Y O O Z X YH YW A B D C F E b a a(b) b a c(d) d c d c e f f e e(f ) ef e f e(f ) c d cd c(d) a(b) b a a b V Z X W H Y V W H Z X Y O O O Z X YH YW 二、重影點(diǎn)及可見(jiàn)性重影點(diǎn)及可見(jiàn)性 H面的重影面的重影 點(diǎn)點(diǎn)A、B V面的重面的重 影點(diǎn)影點(diǎn)C、D W面的重面的重 影點(diǎn)影點(diǎn)E、F三種情況三種情況 第四節(jié)第四節(jié) 直直 線線 的的 投投 影影 直線的投
19、影直線的投影 直線的實(shí)長(zhǎng)直線的實(shí)長(zhǎng) 直線上的點(diǎn)直線上的點(diǎn) 兩直線的相對(duì)位置兩直線的相對(duì)位置 直線的投影特性直線的投影特性 空間直線是無(wú)限長(zhǎng)的,但在投影圖中我們常以空間直線是無(wú)限長(zhǎng)的,但在投影圖中我們常以 有限長(zhǎng)的線段來(lái)代表直線。直線的空間位置可由直有限長(zhǎng)的線段來(lái)代表直線。直線的空間位置可由直 線上任意兩點(diǎn)的位置確定(或直線上一點(diǎn)及指向)。線上任意兩點(diǎn)的位置確定(或直線上一點(diǎn)及指向)。 直線的投影一般仍為直線。直線的投影一般仍為直線。 HH 直線的投影特性直線的投影特性 H a(b) BA a b ba A B A B 當(dāng)直線垂直投影面時(shí),其投影當(dāng)直線垂直投影面時(shí),其投影積聚為一點(diǎn)積聚為一點(diǎn),如
20、圖(,如圖(a)所)所 示;當(dāng)直線平行投影面時(shí),其投影與直線本身示;當(dāng)直線平行投影面時(shí),其投影與直線本身平行且相等平行且相等,如,如 圖(圖(b)所示;當(dāng)直線傾斜于投影面時(shí),其投影的長(zhǎng)度比直線)所示;當(dāng)直線傾斜于投影面時(shí),其投影的長(zhǎng)度比直線 本身的本身的長(zhǎng)度縮短長(zhǎng)度縮短,如圖(,如圖(c)所示。)所示。 (a)(b)(c) OX B A a b a b OX a a b b 直線的投影圖直線的投影圖 V H 作直線的投影,只需作出直線上兩端點(diǎn)的投影,并連接該作直線的投影,只需作出直線上兩端點(diǎn)的投影,并連接該 兩點(diǎn)在同一投影面上的投影(簡(jiǎn)稱(chēng)同面投影)即可。兩點(diǎn)在同一投影面上的投影(簡(jiǎn)稱(chēng)同面投影)
21、即可。 在投影圖中,直線的投影用在投影圖中,直線的投影用粗實(shí)線粗實(shí)線表示。直線的名稱(chēng)可由表示。直線的名稱(chēng)可由 其端點(diǎn)表示(如直線其端點(diǎn)表示(如直線AB,三個(gè)投影表示為,三個(gè)投影表示為ab、ab、ab);); 也可以用一個(gè)字母表示(直線也可以用一個(gè)字母表示(直線L,它的投影表示為它的投影表示為l、l、l)。 直線對(duì)投影面的相對(duì)位置直線對(duì)投影面的相對(duì)位置 在三投影面體系中,根據(jù)直線與投影面的相對(duì)位在三投影面體系中,根據(jù)直線與投影面的相對(duì)位 置不同,直線可分為置不同,直線可分為投影面垂直線投影面垂直線、投影面平行線投影面平行線和和 一般位置直線一般位置直線。前二者統(tǒng)稱(chēng)為。前二者統(tǒng)稱(chēng)為特殊位置直線特殊
22、位置直線。 投影面垂直線投影面垂直線 垂直于某一個(gè)投影面,而平行于另兩個(gè)投影面的垂直于某一個(gè)投影面,而平行于另兩個(gè)投影面的 直線稱(chēng)為直線稱(chēng)為投影面垂直線投影面垂直線。投影面垂直線有三種情況:。投影面垂直線有三種情況: 垂直于垂直于H面的直線稱(chēng)為面的直線稱(chēng)為鉛垂線鉛垂線; 垂直于垂直于V面的直線稱(chēng)為面的直線稱(chēng)為正垂線正垂線; 垂直于垂直于W面的直線稱(chēng)為面的直線稱(chēng)為側(cè)垂線側(cè)垂線。 鉛垂線鉛垂線 ABH 單擊橙 色按鈕 鉛垂線鉛垂線 ABH H H面垂直線具有下列投影特性:面垂直線具有下列投影特性: (1)(1)在在H H面上的投影積聚成一點(diǎn)面上的投影積聚成一點(diǎn); ; (2)(2)在另外兩個(gè)投影面上
23、在另外兩個(gè)投影面上V V、W W的投影,反映了實(shí)長(zhǎng),并共同平的投影,反映了實(shí)長(zhǎng),并共同平 行于同一條投影軸行于同一條投影軸Z Z。 Z XO YH YW b a b a a(b) b a(b) a a b A B V W Y X Z O H O Z X YH YW V W H Z X Y O O Z X YH YW 三種投影面垂直線的立體圖、投影圖三種投影面垂直線的立體圖、投影圖 A B A B B A b a a(b) b a (a)b a b a b a b ba a(b ) ab a b a(b ) b a ba (a)b a(b) b a a b V Z X W H Y V W H Z
24、 X Y O O O Z X YH YW 鉛垂線鉛垂線正垂線正垂線側(cè)垂線側(cè)垂線 投影面垂直線的投影特性投影面垂直線的投影特性 投影特性:直線在其垂直的投影面上的投影投影特性:直線在其垂直的投影面上的投影積聚為一點(diǎn)積聚為一點(diǎn); 在另兩投影面上的投影在另兩投影面上的投影共同平行于這兩個(gè)投影面交成的投影軸共同平行于這兩個(gè)投影面交成的投影軸 (或分別垂直于相應(yīng)的投影軸),且(或分別垂直于相應(yīng)的投影軸),且反映直線實(shí)長(zhǎng)反映直線實(shí)長(zhǎng)。 讀圖時(shí),讀圖時(shí),只要一投影積聚為一點(diǎn),只要一投影積聚為一點(diǎn),即可斷定該直線是投影即可斷定該直線是投影 面垂直線(垂直于積聚投影所在投影面)。面垂直線(垂直于積聚投影所在投影
25、面)。 O Z X YH YW O Z X YH YW ab a b a(b ) b a ba (a)b a(b) b a a b O Z X YH YW 投影面平行線投影面平行線 平行于某一個(gè)投影面,傾斜于另兩個(gè)投影面的直平行于某一個(gè)投影面,傾斜于另兩個(gè)投影面的直 線稱(chēng)為線稱(chēng)為投影面平行線投影面平行線。投影面平行線有三種情況:。投影面平行線有三種情況: 平行于平行于H面的直線稱(chēng)為面的直線稱(chēng)為水平線水平線; 平行于平行于V面的直線稱(chēng)為面的直線稱(chēng)為正平線正平線; 平行于平行于W面的直線稱(chēng)為面的直線稱(chēng)為側(cè)平線側(cè)平線。 水平線水平線 ABH X z a b a b O YH YW b a Z a a
26、 b a b b A B V W Y X O (1)(1)在在H面上的投影,平行于直線本身,且為等長(zhǎng);該投影面上的投影,平行于直線本身,且為等長(zhǎng);該投影 與水平方向和豎直方向間夾角,分別反映了直線對(duì)其他兩個(gè)投與水平方向和豎直方向間夾角,分別反映了直線對(duì)其他兩個(gè)投 影面傾角的大小。影面傾角的大小。 H (2)(2)直線在它不平行的兩個(gè)投影面上直線在它不平行的兩個(gè)投影面上V、W的兩個(gè)投影,共同的兩個(gè)投影,共同 垂直于這兩個(gè)投影面交成的投影軸垂直于這兩個(gè)投影面交成的投影軸Z。 V W H Z X Y O Z X YH YW Z X YH YW O Z X YH YW 三種投影面平行線三種投影面平行線
27、 B A ab a b a b A B b O a b a a b a b a b b a B A abab a b b O a b a a b O a b a bb a V W H Z X Y O V W H Z X Y O 水平線水平線正平線正平線側(cè)平線側(cè)平線 三種投影面平行線三種投影面平行線 投影特性:投影特性:直線在其平行的投影面上的投影,直線在其平行的投影面上的投影,平行于直線平行于直線 本身,且反映實(shí)長(zhǎng)本身,且反映實(shí)長(zhǎng);該投影與水平方向和豎直方向間夾角,分;該投影與水平方向和豎直方向間夾角,分 別別反映了直線與另兩投影面的傾角反映了直線與另兩投影面的傾角;在另兩投影面上的投影在另兩
28、投影面上的投影共共 同垂直于這兩個(gè)投影面交成的投影軸(或分別平行于相應(yīng)的投同垂直于這兩個(gè)投影面交成的投影軸(或分別平行于相應(yīng)的投 影軸),且不反映線段的實(shí)長(zhǎng)影軸),且不反映線段的實(shí)長(zhǎng)。 讀圖時(shí),讀圖時(shí),一個(gè)投影平行于投影軸,而另一投影傾斜于投影一個(gè)投影平行于投影軸,而另一投影傾斜于投影 軸,軸,即可斷定該直線是投影面平行線。即可斷定該直線是投影面平行線。 Z X YH YW Z X YH YW O Z X YH YW abab a b b O c b c c b O a b a bb a 一般位置直線一般位置直線 1.一般位置直線的投影特性一般位置直線的投影特性 三個(gè)投影面上的投影三個(gè)投影面上
29、的投影均傾斜于投影軸均傾斜于投影軸,且小于空間線段的實(shí),且小于空間線段的實(shí) 長(zhǎng);三個(gè)投影與相應(yīng)軸的夾角均不反映直線對(duì)投影面的傾角。長(zhǎng);三個(gè)投影與相應(yīng)軸的夾角均不反映直線對(duì)投影面的傾角。 a a a a b a b b A Z V W Y X O H B X O YH YW Z a b a b a b 一般位置直線一般位置直線 1.一般位置直線的投影特性一般位置直線的投影特性 讀圖時(shí),讀圖時(shí),只要直線的任兩投影呈傾斜狀態(tài)只要直線的任兩投影呈傾斜狀態(tài),即可斷定該直,即可斷定該直 線是一般位置直線。線是一般位置直線。 a a a a b a b b A Z V W Y X O H B X O YH
30、YW Z a b a b a b 【例】【例】 試判斷三棱錐各棱線相對(duì)于投影面的位置試判斷三棱錐各棱線相對(duì)于投影面的位置 X O a a b YH SA、SC: YW Z b c s c a (c ) s b 一般位置直線一般位置直線 SB : 側(cè)平線側(cè)平線 AB、BC:水平線 水平線 AC : 側(cè)垂線側(cè)垂線 s 直線上的點(diǎn)直線上的點(diǎn) 直線上一點(diǎn)的投影,必在該直線的同面投影上,且符合點(diǎn)直線上一點(diǎn)的投影,必在該直線的同面投影上,且符合點(diǎn) 的投影規(guī)律的投影規(guī)律。 (點(diǎn)點(diǎn)E在直線在直線AB上,點(diǎn)上,點(diǎn) K不在直線不在直線AB上上 ) a a b A V X O H B XO a b a b b K
31、E e k e k e k k e b 直線上的點(diǎn)的投影直線上的點(diǎn)的投影 判斷點(diǎn)是否在直線上判斷點(diǎn)是否在直線上 一般情況下一般情況下,根據(jù)點(diǎn),根據(jù)點(diǎn) 的兩個(gè)投影是否在直線的同的兩個(gè)投影是否在直線的同 面投影上就可以確定。面投影上就可以確定。 當(dāng)當(dāng)直線是某一投影面直線是某一投影面 的平行線的平行線時(shí),還應(yīng)觀察直線時(shí),還應(yīng)觀察直線 所平行的那個(gè)投影面上的投所平行的那個(gè)投影面上的投 影,才能判別一點(diǎn)是否在直影,才能判別一點(diǎn)是否在直 線上。線上。 X O a a b YH YW Z a b c c c 故故C點(diǎn)不在點(diǎn)不在AB上。上。 直線上的線段之比直線上的線段之比 點(diǎn)點(diǎn)E在直線在直線AB上上 AE:
32、EBae:eb ae: eb ae: eb。 a a b A V X O H B b E e e 由平行投影的特性可知:若點(diǎn)在線上,由平行投影的特性可知:若點(diǎn)在線上,點(diǎn)分空間線段長(zhǎng)度之點(diǎn)分空間線段長(zhǎng)度之 比等于其同面投影長(zhǎng)度之比比等于其同面投影長(zhǎng)度之比。 【例【例 】 試把已知線段試把已知線段AB分成分成AC:CB2:3。 XO 分析:分析:由定比性知:由定比性知:ac:cbac: cbAC:CB2:3,為此,用幾何作圖的,為此,用幾何作圖的 方法分線段方法分線段AB的一個(gè)投影(如的一個(gè)投影(如ab)為)為ac:cb2:3,可得,可得C點(diǎn)的水平投影點(diǎn)的水平投影c;然后;然后 按直線上點(diǎn)的投影特
33、性在按直線上點(diǎn)的投影特性在ab上定出上定出c,C(c、c)即為所求。即為所求。 a b 作圖:作圖:(1)過(guò)投影)過(guò)投影a作任意輔助線作任意輔助線aB0, 在此線上度量五等分,使在此線上度量五等分,使 aC0:C0B0=2:3,確定,確定C0; (2)連)連b和和B0,再過(guò),再過(guò)C0作輔助線平行作輔助線平行 于于B0b交交ab于點(diǎn)于點(diǎn)c,在水平投影在水平投影ab上得上得 分點(diǎn)分點(diǎn)C的水平投影的水平投影c ; (3)再由)再由c向上作鉛垂連系線,在正向上作鉛垂連系線,在正 面投影面投影ab上得分點(diǎn)上得分點(diǎn)C的正面投影的正面投影c。 b B0 C0 a c c d 定比法定比法:把正面投影把正面投
34、影e 所分所分 cd的比的比m:n移到移到cd上面作出上面作出 e 。 X O c d c 分析:分析:分析:由投影可知分析:由投影可知CD為側(cè)平線,由為側(cè)平線,由e 不能直接對(duì)應(yīng)不能直接對(duì)應(yīng) 作出投影作出投影e,因此可用定比法或第三投影作圖。,因此可用定比法或第三投影作圖。 nm n m 作出第三面投影:作出第三面投影: 先作出先作出 CD的側(cè)面投影的側(cè)面投影cd,再在,再在 cd上作出上作出e,最后在,最后在cd上上 找到找到e。 Z c d YH YW e e e 【例【例 】已知側(cè)平線】已知側(cè)平線CD上一點(diǎn)上一點(diǎn)E的正面投影的正面投影e,要求作出點(diǎn),要求作出點(diǎn)E的水的水 平投影平投影e
35、。 直線的跡點(diǎn)直線的跡點(diǎn) 直線與投影面的交點(diǎn),稱(chēng)為該直線的直線與投影面的交點(diǎn),稱(chēng)為該直線的跡點(diǎn)跡點(diǎn)。 水平跡點(diǎn)水平跡點(diǎn)或或H面跡點(diǎn)面跡點(diǎn):直線與直線與H投影面的交點(diǎn);投影面的交點(diǎn); 正面跡點(diǎn)正面跡點(diǎn)或或V面跡點(diǎn):面跡點(diǎn):直線與直線與V投影面的交點(diǎn);投影面的交點(diǎn); 側(cè)面跡點(diǎn)側(cè)面跡點(diǎn)或或W面跡點(diǎn):面跡點(diǎn):直線與直線與W投影面的交點(diǎn)。投影面的交點(diǎn)。 跡點(diǎn)是投影面上的點(diǎn),故跡點(diǎn)在它所在的投影跡點(diǎn)是投影面上的點(diǎn),故跡點(diǎn)在它所在的投影 面上的投影,與本身重合,在另外投影面上的投影在面上的投影,與本身重合,在另外投影面上的投影在 投影軸上。投影軸上。 b a A V X O H B b n N n m 延長(zhǎng)
36、延長(zhǎng)AB直線,與直線,與H面面 交于交于M點(diǎn)(點(diǎn)(水平跡點(diǎn)水平跡點(diǎn)),), 其其H面投影面投影m在在ab上又與上又與 M重合,而重合,而V面投影面投影 m必必 在在OX軸上又在軸上又在ab 上;上; 延長(zhǎng)延長(zhǎng)AB直線,與直線,與V面面 交于交于N點(diǎn)(點(diǎn)(正面跡點(diǎn)正面跡點(diǎn)),), 其其V面投影面投影n在在ab上又與上又與 N重合,而重合,而H面投影面投影n在在 OX軸上又在軸上又在ab上。上。 mM a 直線的跡點(diǎn)直線的跡點(diǎn) 直線上的線段之比直線上的線段之比 求作跡點(diǎn)投影的過(guò)程:求作跡點(diǎn)投影的過(guò)程: 水平跡點(diǎn):水平跡點(diǎn):延長(zhǎng)延長(zhǎng)AB的正面投的正面投 影影ab 與與OX軸相交于軸相交于m, ,再由
37、再由 m引引OX軸的垂線與直線的水軸的垂線與直線的水 平投影平投影ab的延長(zhǎng)線相交得的延長(zhǎng)線相交得m。 正面跡點(diǎn):正面跡點(diǎn):延長(zhǎng)延長(zhǎng)AB的水平投的水平投 影影ab與與OX軸相交于軸相交于n,再由再由n引引 OX軸的垂線與直線的正面投軸的垂線與直線的正面投 影影ab的延長(zhǎng)線相交得的延長(zhǎng)線相交得n。 XO a a b b m m n n 兩直線的相對(duì)位置兩直線的相對(duì)位置 兩直線在空間的相對(duì)位置有三種:即兩直線在空間的相對(duì)位置有三種:即平行平行、相交相交、 交叉交叉。特殊情況下為互相。特殊情況下為互相垂直垂直。兩平行、相交直線均。兩平行、相交直線均 為為共面直線共面直線,交叉兩直線為,交叉兩直線為異
38、面直線異面直線。 c d 平行兩直線平行兩直線 若空間兩直線互相平行,則其同面投影也平行;反之,若若空間兩直線互相平行,則其同面投影也平行;反之,若 兩直線的同面投影互相平行,則此空間兩直線一定平行。兩直線的同面投影互相平行,則此空間兩直線一定平行。 V W H c d a b c d B A C D a b a b X Z a b a b O YH YW b a c d c d c d 平行兩直線平行兩直線 根據(jù)投影根據(jù)投影判斷兩直線是否平行判斷兩直線是否平行: 對(duì)于對(duì)于一般位置的兩直線一般位置的兩直線,僅根據(jù)直線的任意兩個(gè)同面投影,僅根據(jù)直線的任意兩個(gè)同面投影 是否平行即可判別它們?cè)诳臻g是
39、否平行;是否平行即可判別它們?cè)诳臻g是否平行; X Z a b a b O YH YW b a c d c d c d X O a 對(duì)于對(duì)于平行于同一投影面的兩直線平行于同一投影面的兩直線,則需要有一組是被平行的,則需要有一組是被平行的 投影面上的投影;或者由各同面投影的指向和長(zhǎng)度之比是否一致投影面上的投影;或者由各同面投影的指向和長(zhǎng)度之比是否一致 來(lái)確定。來(lái)確定。 Z YH YW 平行兩直線平行兩直線 b a b c d c d a b d c X O a Z YH YW b a b c d d c a b d c 平行平行 不平行不平行 相交兩直線相交兩直線 若空間兩直線相交,則其同面投影也
40、相交,且各投影的交若空間兩直線相交,則其同面投影也相交,且各投影的交 點(diǎn)符合點(diǎn)的投影規(guī)律。點(diǎn)符合點(diǎn)的投影規(guī)律。 V W H B A C D a b X Z Y O cd c d a b k k K c d b a k X Z a b a b O YH YW b a c d c d c d k k k 反之,若兩直線的同面投影相交,且各同面投影的交點(diǎn)的反之,若兩直線的同面投影相交,且各同面投影的交點(diǎn)的 連線符合空間一點(diǎn)的投影特性,則兩直線在空間一定相交。連線符合空間一點(diǎn)的投影特性,則兩直線在空間一定相交。 兩條一般位置直線,只要任意兩組同面投影符合上述條件,兩條一般位置直線,只要任意兩組同面投影
41、符合上述條件, 即可肯定兩直線相交。即可肯定兩直線相交。 f e f e e f g h g h g h 不相交不相交 相交兩直線相交兩直線 如兩直線中,只要有一條為如兩直線中,只要有一條為某投影面的平行線某投影面的平行線,如要判別,如要判別 它們是否相交,應(yīng)畫(huà)出在該投影面上的同面投影才能肯定,或它們是否相交,應(yīng)畫(huà)出在該投影面上的同面投影才能肯定,或 者利用分比法來(lái)判定。者利用分比法來(lái)判定。 a b c b a d c d c d 不相交不相交 相交兩直線相交兩直線 e a 【例】【例】 判別四邊形判別四邊形ABCD是否為平面四邊形。是否為平面四邊形。 O 分析:分析:若四邊形若四邊形ABCD
42、為平面四邊形,則四邊形的兩對(duì)角線一為平面四邊形,則四邊形的兩對(duì)角線一 定相交,否則為空間四邊形。定相交,否則為空間四邊形。 a 作圖:作圖:(1)連接)連接ac和和ac; (2)連接)連接bd和和bd; (3)檢查)檢查ac和和bd的交點(diǎn)的交點(diǎn)與與 ac和和bd的交點(diǎn)的交點(diǎn)連線是否垂直連線是否垂直 于于OX軸。因交點(diǎn)連線軸。因交點(diǎn)連線不垂不垂 直于直于OX軸,所以可判別四邊形軸,所以可判別四邊形 ABCD不是平面四邊形。不是平面四邊形。 a X b c d b c d 否否 空間既不平行又不相交的兩直線,稱(chēng)為空間既不平行又不相交的兩直線,稱(chēng)為交叉兩直線交叉兩直線。交叉兩。交叉兩 直線的各面投影
43、不具備兩平行或相交直線的投影特性。直線的各面投影不具備兩平行或相交直線的投影特性。 交叉兩直線交叉兩直線 X O a Z YH YW b a b c d d c a b d c 交叉交叉 f e f e e f g h g h g h 交叉交叉 V X O H 交叉兩直線交叉兩直線 空間交叉兩直線在任何投影面上的投影的交點(diǎn)是空間兩個(gè)點(diǎn)空間交叉兩直線在任何投影面上的投影的交點(diǎn)是空間兩個(gè)點(diǎn) 的重合投影,這兩個(gè)點(diǎn)分屬于兩條直線上,因?yàn)樗鼈兾挥谕煌兜闹睾贤队?,這兩個(gè)點(diǎn)分屬于兩條直線上,因?yàn)樗鼈兾挥谕煌?射線上,是射線上,是重影點(diǎn)重影點(diǎn)。投影時(shí),需判斷重影點(diǎn)的。投影時(shí),需判斷重影點(diǎn)的可見(jiàn)性可見(jiàn)性。
44、A B CD b a d c a b c d M N m(n) n m k (l ) L K k l a a X b c d b c O d m(n) m n l k k (l ) V H 垂直兩直線垂直兩直線 相交兩直線的夾角的投影一般不反映角的實(shí)際大小,只有當(dāng)相交兩直線的夾角的投影一般不反映角的實(shí)際大小,只有當(dāng) 構(gòu)成夾角的構(gòu)成夾角的兩直線平行于同一投影面時(shí)兩直線平行于同一投影面時(shí),在該投影面上的投影反,在該投影面上的投影反 映兩直線間的映兩直線間的真實(shí)夾角真實(shí)夾角, b a c B A C a b c a b c b a c V H 垂直兩直線垂直兩直線 空間垂直空間垂直的兩直線,若其中有
45、的兩直線,若其中有一條直線平行于某一投影面一條直線平行于某一投影面, 另一條不平行也不垂直于該投影面時(shí),則兩直線另一條不平行也不垂直于該投影面時(shí),則兩直線在該投影面上的在該投影面上的 投影反映直角投影反映直角,此定理稱(chēng)為,此定理稱(chēng)為直角投影定理直角投影定理。 b a c B A C a b c ABBC、 ABBb abAB ABBbcC平面平面 abBbcC平面平面 abbc。 證明:證明: V H 垂直兩直線垂直兩直線 空間垂直空間垂直的兩直線,若其中有的兩直線,若其中有一條直線平行于某一投影面一條直線平行于某一投影面, 另一條不平行也不垂直于該投影面時(shí),則兩直線另一條不平行也不垂直于該投
46、影面時(shí),則兩直線在該投影面上的在該投影面上的 投影反映直角投影反映直角,此定理稱(chēng)為直角投影定理。,此定理稱(chēng)為直角投影定理。 b a c B A a b a b c b a c 垂直兩直線垂直兩直線 逆定理:即若兩直線的逆定理:即若兩直線的同面投影垂直同面投影垂直,且其中一條直線平行且其中一條直線平行 該投影面該投影面,則可判定該兩直線在,則可判定該兩直線在空間相互垂直空間相互垂直。 V H b a c B A C a b c a b c b a c 垂直兩直線垂直兩直線 直角投影定理不僅適用于相交垂直的兩直線,也適用于直角投影定理不僅適用于相交垂直的兩直線,也適用于交叉交叉 垂直的兩直線。垂直
47、的兩直線。 【例】求點(diǎn)【例】求點(diǎn)C到正平線到正平線AB的距離的距離CD。 分析分析:點(diǎn)到直線的距離,是由該點(diǎn)到該直線所引垂線之長(zhǎng)。直線:點(diǎn)到直線的距離,是由該點(diǎn)到該直線所引垂線之長(zhǎng)。直線AB為正為正 平線,所以點(diǎn)平線,所以點(diǎn)C到到AB的距離的距離CD和和AB的正面投影的正面投影ab與與cd一定相互垂直(一定相互垂直(直角直角 投影定理投影定理)。因此,先求出垂線的正面投影,然后求出水平投影,最后用直)。因此,先求出垂線的正面投影,然后求出水平投影,最后用直 角三角形法求出垂線實(shí)長(zhǎng)。角三角形法求出垂線實(shí)長(zhǎng)。 a c b a c b d d CD 作圖:作圖: (1 1)作)作cdab交于交于ab
48、一一 點(diǎn)點(diǎn)d。 (2 2)由)由d 作豎直連系線交作豎直連系線交 ab于一點(diǎn)于一點(diǎn)d,并連結(jié),并連結(jié)cd。 (3 3)利用直角三角形法求)利用直角三角形法求 出出CD的實(shí)長(zhǎng)的實(shí)長(zhǎng)。 【例】已知正方形【例】已知正方形ABCD對(duì)角線的投影,對(duì)角線的投影,B在在A的下的下 方試完成正方形的兩面投影。方試完成正方形的兩面投影。 分析分析:正方形對(duì)角線一定相交垂直且等長(zhǎng),由正方形對(duì)角線一定相交垂直且等長(zhǎng),由acox軸,對(duì)角線軸,對(duì)角線AC為水為水 平線,因此兩對(duì)角線的水平投影平線,因此兩對(duì)角線的水平投影acbd。又因。又因BDACac,且對(duì)角線半長(zhǎng),且對(duì)角線半長(zhǎng)KC kc,由對(duì)角線的半長(zhǎng)的水平投影,由對(duì)
49、角線的半長(zhǎng)的水平投影kb可求出其可求出其kb的長(zhǎng)度和的長(zhǎng)度和K、B的的Z坐標(biāo)差。坐標(biāo)差。 a e b a c b d 作圖:作圖: (1 1)求中點(diǎn)的投影)求中點(diǎn)的投影k、k,并過(guò),并過(guò) k作對(duì)角線作對(duì)角線AC的水平投影的水平投影ac。 (2 2)直角三角形法求()直角三角形法求(kbe), 求出求出K、B的的Z坐標(biāo)差,并求出坐標(biāo)差,并求出b。 (3 3)過(guò))過(guò)k作對(duì)角線作對(duì)角線BD的正面投的正面投 影影bd,連接對(duì)角線的端點(diǎn),即完,連接對(duì)角線的端點(diǎn),即完 成正方形成正方形ABCD的兩面投影。的兩面投影。 o x d k k c 第五節(jié)第五節(jié) 平平 面面 平面的投影平面的投影 平面對(duì)投影面的相
50、對(duì)位置平面對(duì)投影面的相對(duì)位置 平面上的點(diǎn)和線平面上的點(diǎn)和線 平面上的特殊線平面上的特殊線 平面幾何元素表示法平面幾何元素表示法 c b a c b a c c a b b a a b c c a b c c a a b c c a b a b d d 不在一直線上三點(diǎn)不在一直線上三點(diǎn)一直線和線外一點(diǎn)一直線和線外一點(diǎn)相交兩直線相交兩直線平行兩直線平行兩直線任意平面圖形任意平面圖形 平面的投影性質(zhì)平面的投影性質(zhì) 1 1、平面圖形的投影,由平面圖形的輪廓線的投影表示。、平面圖形的投影,由平面圖形的輪廓線的投影表示。 a b c c a b b a A B C X X Y Z Z YH YW a b
51、a b a b c c c O 平面的投影性質(zhì)平面的投影性質(zhì) (a) b c a d 2 2、平面圖形傾斜于某投影面時(shí),在該面上的投影是一個(gè)、平面圖形傾斜于某投影面時(shí),在該面上的投影是一個(gè) 類(lèi)似圖形,但形狀、大小均可變化類(lèi)似圖形,但形狀、大小均可變化( (圖圖a)a)。 平面的投影性質(zhì)平面的投影性質(zhì) (a) b c a d d(a) c(b) (b) E F M emf 積聚 投影 3 3、平面垂直于某投影面時(shí),在該面上的投影積聚成一、平面垂直于某投影面時(shí),在該面上的投影積聚成一 直線直線( (圖圖b)b)。 平面的投影性質(zhì)平面的投影性質(zhì) (a) b c a d d(a) c(b) (b) E
52、 F M emf 4 4、平面平行于某投影面時(shí),在該面上的投影反映平面、平面平行于某投影面時(shí),在該面上的投影反映平面 圖形的真實(shí)性狀、大小和方向等圖形的真實(shí)性狀、大小和方向等( (圖圖c)c)。 (c) ba dc 跡線表示法跡線表示法 跡線是平面與投影面的交線。跡線是平面與投影面的交線。 V H W P PH PV PW 側(cè)面跡線 水平跡 線 正面跡線 P(跡線平面) 跡線平面表示法跡線平面表示法 作出跡線平面的三面投影,由此三面投影即作出跡線平面的三面投影,由此三面投影即 可確定平面??纱_定平面。 跡線表示法跡線表示法 跡線平面表示法如圖所示:跡線平面表示法如圖所示: PV PH PW 注
53、意注意:跡線的符號(hào)用平面名稱(chēng):跡線的符號(hào)用平面名稱(chēng) 的大寫(xiě)字母附加投影面名稱(chēng)的的大寫(xiě)字母附加投影面名稱(chēng)的 下標(biāo)來(lái)表示,下標(biāo)來(lái)表示,PH、PV、PW。 在投影圖上,通常只將跡在投影圖上,通常只將跡 線與重合的那個(gè)投影畫(huà)出,并線與重合的那個(gè)投影畫(huà)出,并 用大寫(xiě)帶腳標(biāo)的符號(hào)標(biāo)記,凡用大寫(xiě)帶腳標(biāo)的符號(hào)標(biāo)記,凡 和投影軸重合的投影不需畫(huà)出,和投影軸重合的投影不需畫(huà)出, 也省略標(biāo)記。也省略標(biāo)記。 表示特殊位置平面時(shí),主要用此法表示。表示特殊位置平面時(shí),主要用此法表示。 平面的分類(lèi)平面的分類(lèi) 根據(jù)平面相對(duì)于投影面的傾斜角度的不同,根據(jù)平面相對(duì)于投影面的傾斜角度的不同, 可分為三類(lèi):可分為三類(lèi): 一般位置平面
54、一般位置平面: 投影面平行面投影面平行面: 投影面垂直面投影面垂直面: 與各投影面呈一般角度的傾斜。與各投影面呈一般角度的傾斜。 垂直于某投影面。垂直于某投影面。 平行于某投影面。平行于某投影面。 三類(lèi)平面具有不同的投影特性。 一般位置平面一般位置平面 結(jié)論結(jié)論: 一般面的三面投影均為原形的類(lèi)似形,其大小小于實(shí)形。一般面的三面投影均為原形的類(lèi)似形,其大小小于實(shí)形。 a b c c a b b a A B C X X Y Z Z YH YW a b a b a b c c c O 投影面垂直面投影面垂直面 垂直于某一投影面而傾斜于另外兩個(gè)投影面的平面,垂直于某一投影面而傾斜于另外兩個(gè)投影面的平面
55、, 稱(chēng)為投影面垂直面。稱(chēng)為投影面垂直面。 投影面垂直面因其所垂直的投影面不同分為:投影面垂直面因其所垂直的投影面不同分為: (1 1)H H面垂直面或面垂直面或鉛垂面鉛垂面:垂直于:垂直于H H面的平面;面的平面; (2 2)V V面垂直面或面垂直面或正垂面正垂面:垂直于:垂直于V V面的平面;面的平面; (3 3)W W面垂直面或面垂直面或側(cè)垂面?zhèn)却姑妫捍怪庇冢捍怪庇赪 W面的平面。面的平面。 鉛垂面鉛垂面 投影面垂直面投影面垂直面 V Z X Y H O p p p P X Z O YH YW p p p (1 1)水平投影)水平投影p積聚成直線,并反映傾角積聚成直線,并反映傾角和和 (2
56、 2)正面投影)正面投影pp和側(cè)面投影和側(cè)面投影p”p”不反映不反映實(shí)形實(shí)形 投影特性:投影特性: 正垂面正垂面 投影面垂直面投影面垂直面 q q” X Z q O YH YW a Z X Y H W q q q a O Q V (1 1)正面投影)正面投影q積聚成直線,并反映傾角積聚成直線,并反映傾角和和 (2 2)水平投影)水平投影q和側(cè)面投影和側(cè)面投影q”不反映不反映實(shí)形實(shí)形 投影特性:投影特性: 側(cè)垂面?zhèn)却姑?投影面垂直面投影面垂直面 V Z X Y H W O r r r R a X Z O YH YW r r r a (1 1)側(cè)面投影)側(cè)面投影r”積聚成直線,并反映傾角積聚成直線
57、,并反映傾角和和 (2 2)正面投影)正面投影r和水平投影和水平投影r 不反映不反映實(shí)形實(shí)形 投影特性:投影特性: 投影特性投影特性 在它所垂直的投影面上投影積聚為一直線;此積聚投影與相在它所垂直的投影面上投影積聚為一直線;此積聚投影與相 應(yīng)投影軸的夾角,反映該平面相對(duì)于相應(yīng)投影面的傾角。投影面應(yīng)投影軸的夾角,反映該平面相對(duì)于相應(yīng)投影面的傾角。投影面 垂直面的其它投影均比實(shí)形小,為原形的類(lèi)似形狀。垂直面的其它投影均比實(shí)形小,為原形的類(lèi)似形狀。 投影面垂直面投影面垂直面 鉛垂面鉛垂面 正垂面正垂面 側(cè)垂面?zhèn)却姑?X Z O YH YW r r r” a q q” X Z q O YH a X Z
58、 YH O p P” p 投影面垂直面投影面垂直面 鉛垂面鉛垂面 正垂面正垂面 側(cè)垂面?zhèn)却姑?X Z O YH YW r r r” a q q” X Z q O YH a X Z YH O p P” p 讀圖讀圖 一平面只要有一平面只要有一面投影積聚為直線一面投影積聚為直線,則它必然垂直,則它必然垂直 于積聚投影所在的投影面。于積聚投影所在的投影面。 跡線平面法表示三種垂直面跡線平面法表示三種垂直面: 注意注意:用跡線平面表示法表示平面習(xí)慣上只作跡線:用跡線平面表示法表示平面習(xí)慣上只作跡線 平面的積聚投影,其它兩面投影不用作。但必須在平面的積聚投影,其它兩面投影不用作。但必須在 該積聚投影旁邊
59、標(biāo)注平面的該面跡線的標(biāo)記。該積聚投影旁邊標(biāo)注平面的該面跡線的標(biāo)記。 PH PV PW 鉛垂面正垂面?zhèn)却姑?投影面垂直面投影面垂直面 投影面平行面投影面平行面 平行于一個(gè)投影面同時(shí)垂直于另外兩個(gè)投影面平行于一個(gè)投影面同時(shí)垂直于另外兩個(gè)投影面 的平面稱(chēng)為投影面平行面。的平面稱(chēng)為投影面平行面。 水平面水平面:平行于平行于H面。面。 正平面正平面:平行于平行于V面。面。 側(cè)平面?zhèn)绕矫妫浩叫杏谄叫杏赪面。面。 投影面平行面投影面平行面 X Z p p p O YH YW X V Z W p p P” P O H Y 1.1.投影面平行面水平面投影面平行面水平面 (1 1)水平投影)水平投影p反映實(shí)形反映
60、實(shí)形 (2 2)正面投影)正面投影p及側(cè)面投影及側(cè)面投影p”均有積聚性均有積聚性 且且p/0X/0X軸;軸;p”/OY”/OYW軸軸 投影特性:投影特性: 投影面平行面投影面平行面 q”q q X Z O YH YW X V Z W O H Y q q” q Q (1 1)正面投影)正面投影q反映實(shí)形反映實(shí)形 (2 2)水平投影)水平投影q及側(cè)面投影及側(cè)面投影q”均有積聚性均有積聚性 且且q /0X/0X軸;軸;q”/”/OZ軸軸 投影特性:投影特性: 2.2.投影面平行面正平面投影面平行面正平面 投影面平行面投影面平行面 X Z O r r r YH YW X V Z W O H Y R r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 審計(jì)部門(mén)個(gè)人工作總結(jié)
- 安全教育課件《如何拒絕校園暴力》
- 免疫學(xué)的臨床應(yīng)用
- 惠州物業(yè)合同范例
- 家裝油漆合同范例
- 勞務(wù)派遣合伙合同范例
- 庫(kù)板安裝合同范例
- 工商建設(shè)工程合同范例
- 工程木工施工合同范例
- 婚禮購(gòu)銷(xiāo)合同模板
- GB/T 41632-2022絕緣液體電氣用未使用過(guò)的合成有機(jī)酯
- GB/T 247-1997鋼板和鋼帶檢驗(yàn)、包裝、標(biāo)志及質(zhì)量證明書(shū)的一般規(guī)定
- GB/T 12584-2001橡膠或塑料涂覆織物低溫沖擊試驗(yàn)
- FZ/T 50040-2018化學(xué)纖維短纖維親水性能試驗(yàn)方法
- ICH-Q7活性藥物成分(API)的GMP指南課件
- 最新人教版七年級(jí)數(shù)學(xué)上冊(cè)《數(shù)學(xué)活動(dòng)》教學(xué)課件
- 小學(xué)安全教育人教四年級(jí)上冊(cè)安全生活家庭燃?xì)庑孤┑念A(yù)防和處理 課件
- 綜合管理部綜合辦公室工作交接表
- 中小學(xué)生營(yíng)養(yǎng)知識(shí)、態(tài)度、行為及膳食多樣性調(diào)查問(wèn)卷
- 歷史九年級(jí)上冊(cè)《目錄與課程標(biāo)準(zhǔn)》2022版
- 部編版語(yǔ)文五年級(jí)上冊(cè)第六單元(復(fù)習(xí)課件)
評(píng)論
0/150
提交評(píng)論