![高中數(shù)學 第2章 圓錐曲線與方程 2..2 橢圓的簡單幾何性質(zhì)教案 湘教版選修-_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/26/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae1.gif)
![高中數(shù)學 第2章 圓錐曲線與方程 2..2 橢圓的簡單幾何性質(zhì)教案 湘教版選修-_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/26/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae2.gif)
![高中數(shù)學 第2章 圓錐曲線與方程 2..2 橢圓的簡單幾何性質(zhì)教案 湘教版選修-_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-6/26/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae/a6db2d1e-bb3c-4181-92b6-4e3cabf459ae3.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、學必求其心得,業(yè)必貴于專精2.1.2橢圓的簡單幾何性質(zhì) 知識與技能目標了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標準方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義 過程與方法目標(1)復(fù)習與引入過程引導(dǎo)學生復(fù)習由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖像的特點,在本節(jié)中不僅要注意通過對橢圓的標準方程的討論,研究橢圓的幾何性質(zhì)的理解和應(yīng)用,而且還注意對這種研究方法的培養(yǎng)由橢圓的標準方程和非負實數(shù)的概念能得到橢圓的范圍;由方程的性質(zhì)得到橢圓的對稱性;先定義圓錐曲線頂點的概念
2、,容易得出橢圓的頂點的坐標及長軸、短軸的概念;通過p48的思考問題,探究橢圓的扁平程度量橢圓的離心率板書212橢圓的簡單幾何性質(zhì)(2)新課講授過程(i)通過復(fù)習和預(yù)習,知道對橢圓的標準方程的討論來研究橢圓的幾何性質(zhì)提問:研究曲線的幾何特征有什么意義?從哪些方面來研究?通過對曲線的范圍、對稱性及特殊點的討論,可以從整體上把握曲線的形狀、大小和位置要從范圍、對稱性、頂點及其他特征性質(zhì)來研究曲線的幾何性質(zhì) (ii)橢圓的簡單幾何性質(zhì) 范圍:由橢圓的標準方程可得,進一步得:,同理可得:,即橢圓位于直線和所圍成的矩形框圖里;對稱性:由以代,以代和代,且以代這三個方面來研究橢圓的標準方程發(fā)生變化沒有,從而
3、得到橢圓是以軸和軸為對稱軸,原點為對稱中心;頂點:先給出圓錐曲線的頂點的統(tǒng)一定義,即圓錐曲線的對稱軸與圓錐曲線的交點叫做圓錐曲線的頂點因此橢圓有四個頂點,由于橢圓的對稱軸有長短之分,較長的對稱軸叫做長軸,較短的叫做短軸;離心率: 橢圓的焦距與長軸長的比叫做橢圓的離心率(),; (iii)例題講解與引申、擴展例4 求橢圓的長軸和短軸的長、離心率、焦點和頂點的坐標分析:由橢圓的方程化為標準方程,容易求出引導(dǎo)學生用橢圓的長軸、短軸、離心率、焦點和頂點的定義即可求相關(guān)量擴展:已知橢圓的離心率為,求的值解法剖析:依題意,但橢圓的焦點位置沒有確定,應(yīng)分類討論:當焦點在軸上,即時,有,得;當焦點在軸上,即時
4、,有,例5 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面的一部分過對對稱的截口是橢圓的一部分,燈絲位于橢圓的一個焦點上,片門位于另一個焦點上,由橢圓一個焦點發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個焦點已知,,建立適當?shù)淖鴺讼?求截口所在橢圓的方程解法剖析:建立適當?shù)闹苯亲鴺讼?設(shè)橢圓的標準方程為,算出的值;此題應(yīng)注意兩點:注意建立直角坐標系的兩個原則;關(guān)于的近似值,原則上在沒有注意精確度時,看題中其他量給定的有效數(shù)字來決定引申:如圖所示, “神舟”截人飛船發(fā)射升空,進入預(yù)定軌道開始巡天飛行,其軌道是以地球的中心為一個焦點的橢圓,近地點距地面,遠地點距地面,已知地球的半徑建立適當?shù)闹苯亲鴺讼担?/p>
5、求出橢圓的軌跡方程例6如圖,設(shè)與定點的距離和它到直線:的距離的比是常數(shù),求點的軌跡方程分析:若設(shè)點,則,到直線:的距離,則容易得點的軌跡方程引申:(用幾何畫板探究)若點與定點的距離和它到定直線:的距離比是常數(shù),則點的軌跡方程是橢圓其中定點是焦點,定直線:相應(yīng)于的準線;由橢圓的對稱性,另一焦點,相應(yīng)于的準線: 情感、態(tài)度與價值觀目標在合作、互動的教學氛圍中,通過師生之間、學生之間的交流、合作、互動實現(xiàn)共同探究,教學相長的教學活動情境,結(jié)合教學內(nèi)容,培養(yǎng)學生科學探索精神、審美觀和科學世界觀,激勵學生創(chuàng)新必須讓學生認同和掌握:橢圓的簡單幾何性質(zhì),能由橢圓的標準方程能直接得到橢圓的范圍、對稱性、頂點和
6、離心率;必須讓學生認同與理解:已知幾何圖形建立直角坐標系的兩個原則,充分利用圖形對稱性,注意圖形的特殊性和一般性;必須讓學生認同與熟悉:取近似值的兩個原則:實際問題可以近似計算,也可以不近似計算,要求近似計算的一定要按要求進行計算,并按精確度要求進行,沒有作說明的按給定的有關(guān)量的有效數(shù)字處理;讓學生參與并掌握利用信息技術(shù)探究點的軌跡問題,培養(yǎng)學生學習數(shù)學的興趣和掌握利用先進教學輔助手段的技能 能力目標(1) 分析與解決問題的能力:通過學生的積極參與和積極探究,培養(yǎng)學生的分析問題和解決問題的能力(2) 思維能力:會把幾何問題化歸成代數(shù)問題來分析,反過來會把代數(shù)問題轉(zhuǎn)化為幾何問題來思考;培養(yǎng)學生的會從特殊性問題引申到一般性來研究,培養(yǎng)學生的辯證思維
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八項規(guī)定手寫承諾書范本
- 手足口病防控培訓課件
- 2025-2030全球等離子處理設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球醫(yī)用無紡布電極片行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球鋰電池用隔膜行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國發(fā)泡奶精行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國油炸方便面生產(chǎn)線行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國超薄壁PET熱縮管行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球耐高溫耐火絕緣磚行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球衛(wèi)星鋰離子電池行業(yè)調(diào)研及趨勢分析報告
- 房地產(chǎn)調(diào)控政策解讀
- 五年級數(shù)學(小數(shù)乘法)計算題專項練習及答案
- 產(chǎn)前診斷室護理工作總結(jié)
- 2024-2025學年八年級數(shù)學人教版上冊寒假作業(yè)(綜合復(fù)習能力提升篇)(含答案)
- 《AP內(nèi)容介紹》課件
- 醫(yī)生定期考核簡易程序述職報告范文(10篇)
- 市政工程人員績效考核制度
- 公園景區(qū)安全生產(chǎn)
- 安全創(chuàng)新創(chuàng)效
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 初級創(chuàng)傷救治課件
評論
0/150
提交評論