高一數(shù)學必修一知識點精選最新5篇_第1頁
高一數(shù)學必修一知識點精選最新5篇_第2頁
高一數(shù)學必修一知識點精選最新5篇_第3頁
高一數(shù)學必修一知識點精選最新5篇_第4頁
高一數(shù)學必修一知識點精選最新5篇_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高一數(shù)學必修一知識點精選最新5篇數(shù)學被很多學生認為是一門很難的學科,高中數(shù)學更是如此,但是數(shù)學作為三大主課之一,所占的分量自是不清,很多學生也明白如果數(shù)學學不好的話想要考上理想的大學是天方夜譚,但是苦于無學習之法,那么高中數(shù)學都有哪些學習方法呢?下面就是小編給大家?guī)淼母咭粩?shù)學必修一知識點,希望對大家有所幫助!高一數(shù)學必修一知識點1二次函數(shù)i.定義與定義表達式一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax2+bx+c(a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就

2、越大.)則稱y為x的二次函數(shù)。二次函數(shù)表達式的右邊通常為二次三項式。ii.二次函數(shù)的三種表達式一般式:y=ax2+bx+c(a,b,c為常數(shù),a0)頂點式:y=a(x-h)2+k拋物線的頂點p(h,k)交點式:y=a(x-x?)(x-x?)僅限于與x軸有交點a(x?,0)和b(x?,0)的拋物線注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b2)/4ax?,x?=(-bb2-4ac)/2aiii.二次函數(shù)的圖像在平面直角坐標系中作出二次函數(shù)y=x2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。iv.拋物線的性質(zhì)1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋

3、物線的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個頂點p,坐標為p(-b/2a,(4ac-b2)/4a)當-b/2a=0時,p在y軸上;當=b2-4ac=0時,p在x軸上。3.二次項系數(shù)a決定拋物線的開口方向和大小。當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。一次函數(shù)一、定義與定義式:自變量x和因變量y有如下關(guān)系:y=kx+b則此時稱y是x的一次函數(shù)。特別地,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k0)二、一次函數(shù)的性質(zhì):1.y的變化值與對應的x的變化值成正比例,比值為k

4、即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))2.當x=0時,b為函數(shù)在y軸上的截距。三、一次函數(shù)的圖像及性質(zhì):1.作法與圖形:通過如下3個步驟(1)列表;(2)描點;(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)2.性質(zhì):(1)在一次函數(shù)上的任意一點p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.k,b與函數(shù)圖像所在象限:當k>0時,直線必通過一、三象限,y隨x的增大而增大;當k<0時,直線

5、必通過二、四象限,y隨x的增大而減小。當b>0時,直線必通過一、二象限;當b=0時,直線通過原點當b<0時,直線必通過三、四象限。特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。高一數(shù)學必修一知識點2指數(shù)函數(shù)(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。(3)函數(shù)圖形都是下凹的。(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減

6、的。(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。(6)函數(shù)總是在某一個方向上無限趨向于x軸,永不相交。(7)函數(shù)總是通過(0,1)這點。(8)顯然指數(shù)函數(shù)。高一數(shù)學必修一知識點3一、一次函數(shù)定義與定義式:自變量x和因變量y有如下關(guān)系:y=kx+b則此時稱y是x的一次函數(shù)。特別地,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k0)二、一次函數(shù)的性質(zhì):1.y的變化值與對應的x的變

7、化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))2.當x=0時,b為函數(shù)在y軸上的截距。三、一次函數(shù)的圖像及性質(zhì):1.作法與圖形:通過如下3個步驟(1)列表;(2)描點;(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)2.性質(zhì):(1)在一次函數(shù)上的任意一點p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.k,b與函數(shù)圖像所在象限:當k>0時,直線必通過一、三象限,y隨x的增大而增大;

8、當k<0時,直線必通過二、四象限,y隨x的增大而減小。當b>0時,直線必通過一、二象限;當b=0時,直線通過原點當b<0時,直線必通過三、四象限。特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。高一數(shù)學必修一知識點41.“包含”關(guān)系子集注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba2.“相等”關(guān)系:a=b(55,且55,則5=5)實例:設(shè)a=x|x2-1=0b=-1,1“元素相同則兩集合相

9、等”即:任何一個集合是它本身的子集。a?a真子集:如果a?b,且a?b那就說集合a是集合b的真子集,記作ab(或ba)如果a?b,b?c,那么a?c如果a?b同時b?a那么a=b3.不含任何元素的集合叫做空集,記為規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。?有n個元素的集合,含有2n個子集,2n-1個真子集高一數(shù)學必修一知識點5第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時,要注意以下幾點:分母不為

10、0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。對于函數(shù)不同的單調(diào)遞增(

11、減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊?。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計的,在

12、解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點時,考生需格外注意這類問題。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論