版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高中高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)最新大全生活中運(yùn)用了許許多多的數(shù)學(xué),如果你的數(shù)學(xué)沒有學(xué)好的話,你的生活就和平常人有了很大的差異。所以我們要好好學(xué)習(xí)數(shù)學(xué),好好的去學(xué)會(huì)怎么運(yùn)用數(shù)學(xué)。高中高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)最新有哪些?一起來看看高中高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)最新,歡迎查閱!高二上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)
2、/(x2-x1),另外切線的斜率用求導(dǎo)的方法。3、直線方程:點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,斜截式:直線在軸上的截距為和斜率,則直線方程為4、,,;.直線與直線的位置關(guān)系:(1)平行a1/a2=b1/b2注意檢驗(yàn)(2)垂直a1a2+b1b2=05、點(diǎn)到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問題.相離相切相交9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的
3、平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)二、圓錐曲線方程:1、橢圓:方程(a>b>0)注意還有一個(gè);定義:|pf1|+|pf2|=2a>2c;e=長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;2、雙曲線:方程(a,b>0)注意還有一個(gè);定義:|pf1|-|pf2|=2a<2c;e=;實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或c2=a2+b23、拋物線:方程y2=2px注意還有三個(gè),能區(qū)別開口方向;定義:|pf|=d焦點(diǎn)f(,0),準(zhǔn)線x=-;焦半徑;焦點(diǎn)弦=x1+x2+p;4、直線被圓錐曲線截得的弦長(zhǎng)公式:5
4、、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為,則數(shù)量|a|b|cos叫做a與b的數(shù)量積,記作ab,即3、模的計(jì)算:|a|=.算??梢韵人阆蛄康钠椒?、向量的運(yùn)算過程中完全平方公式等照樣適用:三、直線、平面、簡(jiǎn)單幾何體:1、學(xué)會(huì)三視圖的分析:2、斜二測(cè)畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸ox、oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸ox、oy、使xoy=45(或135);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:
5、柱體:表面積:s=s側(cè)+2s底;側(cè)面積:s側(cè)=;體積:v=s底h錐體:表面積:s=s側(cè)+s底;側(cè)面積:s側(cè)=;體積:v=s底h:臺(tái)體表面積:s=s側(cè)+s上底s下底側(cè)面積:s側(cè)=球體:表面積:s=;體積:v=4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫(1)直線與平面平行:線線平行線面平行;面面平行線面平行。(2)平面與平面平行:線面平行面面平行。(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟-.找或作角;.求角)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;直線與平面所成的角:直線與射影所成的角四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-
6、導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率k=f/(x0)表示過曲線y=f(x)上p(x0,f(x0)切線斜率。v=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。3.常見函數(shù)的導(dǎo)數(shù)公式:;。4.導(dǎo)數(shù)的四則運(yùn)算法則:5.導(dǎo)數(shù)的應(yīng)用:(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。(2)求極值的步驟:求導(dǎo)數(shù);求方程的根;列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在
7、這個(gè)根處取得極小值;(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:求的根;把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。五、常用邏輯用語:1、四種命題:原命題:若p則q;逆命題:若q則p;否命題:若p則q;逆否命題:若q則p注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.3、邏輯聯(lián)結(jié)詞:且(and):命題形式pq;pqpqpqp或(or):命題形式pq;真真真真假非(not):命題形式p.真假假真假假真假真真假假假假真“或命題”的真假特點(diǎn)是“一真即真,要假全
8、假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”4、充要條件由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。5、全稱命題與特稱命題:短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。短語“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。全稱命題p:;全稱命題p的否定p:。特稱命題p:;特稱命題p的否定p:高二上期數(shù)學(xué)知識(shí)點(diǎn)一、不等式的性質(zhì)1.兩個(gè)實(shí)數(shù)a與b之間的
9、大小關(guān)系2.不等式的性質(zhì)(4)(乘法單調(diào)性)3.絕對(duì)值不等式的性質(zhì)(2)如果a>0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b|ab|a|+|b|.(6)|a1+a2+an|a1|+|a2|+|an|.二、不等式的證明1.不等式證明的依據(jù)(2)不等式的性質(zhì)(略)(3)重要不等式:|a|0;a20;(a-b)20(a、br)a2+b22ab(a、br,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))2.不等式的證明方法(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.用比較法證明不等式的步驟是:作差變形判斷符號(hào).(2)綜合法:從已知條件出發(fā),依據(jù)不等式的
10、性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.解一元高次不等式;解分式不等式;解無理不等式;解指數(shù)不等式;解對(duì)數(shù)不等式;解帶絕對(duì)值的不等式;解不等式組.2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):(1)正確應(yīng)用不等式的基本性質(zhì).(2)
11、正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性.(3)注意代數(shù)式中未知數(shù)的取值范圍.3.不等式的同解性(5)|f(x)|0)(6)|f(x)|>g(x)與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)0)同解;與g(x)<0同解.(9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0ag(x)與f(x)四、不等式解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。直接困難分析好,思路清晰綜合法
12、。非負(fù)常用基本式,正面難則反證法。還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。五、立體幾何點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。六、平面解析幾何有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者一來對(duì)應(yīng),開創(chuàng)幾何新途徑。兩種思想相輝映,化歸思想打前
13、陣;都說待定系數(shù)法,實(shí)為方程組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)七、排列、組合、二項(xiàng)式定理加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。關(guān)于二項(xiàng)式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。八、復(fù)數(shù)虛數(shù)單位i一出,數(shù)集
14、擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與x軸正向,所成便是輻角度。箭桿的長(zhǎng)即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密
15、切,須注意本質(zhì)區(qū)別。平方關(guān)系:sin2+cos2=11+tan2=sec21+cot2=csc2積的關(guān)系:sin=tancoscos=cotsintan=sinseccot=coscscsec=tancsccsc=seccot倒數(shù)關(guān)系:tancot=1sincsc=1cossec=1商的關(guān)系:sin/cos=tan=sec/csccos/sin=cot=csc/sec直角三角形abc中,角a的正弦值就等于角a的對(duì)邊比斜邊,余弦等于角a的鄰邊比斜邊正切等于對(duì)邊比鄰邊,1三角函數(shù)恒等變形公式兩角和與差的三角函數(shù):cos(+)=coscos-sinsincos(-)=coscos+sinsinsin
16、()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)三角和的三角函數(shù):sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)輔助角公式:asin+bcos=(a2+b2)(1/2)sin(+t),其中sint=b/(a2+b2)(1/2)cost=a/(a2+b2)(1/2
17、)tant=b/aasin-bcos=(a2+b2)(1/2)cos(-t),tant=a/b倍角公式:sin(2)=2sincos=2/(tan+cot)cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2()tan(2)=2tan/1-tan2()三倍角公式:sin(3)=3sin-4sin3()=4sinsin(60+)sin(60-)cos(3)=4cos3()-3cos=4coscos(60+)cos(60-)tan(3)=tanatan(/3+a)tan(/3-a)半角公式:sin(/2)=(1-cos)/2)cos(/2)=(1+cos)/2)tan(/2
18、)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin降冪公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-cos(2)/(1+cos(2)萬能公式:sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)積化和差公式:sincos=(1/2)sin(+)+sin(-)cossin=(1/2)sin(+)-sin(-)coscos=(1/2)cos(+)+cos(-)sinsin=-(1/
19、2)cos(+)-cos(-)和差化積公式:sin+sin=2sin(+)/2cos(-)/2sin-sin=2cos(+)/2sin(-)/2cos+cos=2cos(+)/2cos(-)/2cos-cos=-2sin(+)/2sin(-)/2推導(dǎo)公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2高中怎么提升數(shù)學(xué)成績(jī)1.制定學(xué)習(xí)計(jì)劃到了高三,數(shù)學(xué)基礎(chǔ)差的同學(xué)只有一年的時(shí)間來彌補(bǔ)。所以你要明白這一年的時(shí)間里,你的數(shù)學(xué)要達(dá)到什么樣的目標(biāo)。比如你現(xiàn)在的數(shù)學(xué)成績(jī)是60分(150滿計(jì)算),經(jīng)過一年的努力你想達(dá)到什么樣的成績(jī),以此作為依據(jù)來分配好自己的學(xué)習(xí)計(jì)劃。2.懂得舍棄在高三一年的時(shí)間里,你不可能將全部的數(shù)學(xué)知識(shí)都完全掌握,所以這個(gè)時(shí)候你就要懂得舍棄,要做到抓大放小。根據(jù)考試大綱,把重
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)項(xiàng)目推廣傭金合同(2篇)
- 2022-2023學(xué)年山東省濟(jì)寧市高一上學(xué)期期末考試地理試題(解析版)
- 2025裝修施工管理合同模板
- 2025北京門頭溝初三(上)期末數(shù)學(xué)真題試卷(含答案解析)
- 2025年眈脂劑項(xiàng)目可行性研究報(bào)告
- 立體車庫配件生產(chǎn)項(xiàng)目可行性研究報(bào)告?zhèn)浒干暾?qǐng)
- 2025年中國海上保險(xiǎn)行業(yè)發(fā)展趨勢(shì)預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 中國蜂蝎酒項(xiàng)目投資可行性研究報(bào)告
- 2019-2025年中國證書行業(yè)市場(chǎng)前景預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025年化學(xué)氣相沉積設(shè)備項(xiàng)目評(píng)估報(bào)告
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國特厚板市場(chǎng)占總銷售量45.01%
- 2024版影視制作公司與演員經(jīng)紀(jì)公司合作協(xié)議3篇
- 2024年上海市初三語文二模試題匯編之記敘文閱讀
- 2024年度上海市嘉定區(qū)工業(yè)廠房買賣合同2篇
- 2023-2024學(xué)年廣東省廣州市海珠區(qū)九年級(jí)(上)期末化學(xué)試卷(含答案)
- 音樂老師年度總結(jié)5篇
- 自動(dòng)控制理論(哈爾濱工程大學(xué))知到智慧樹章節(jié)測(cè)試課后答案2024年秋哈爾濱工程大學(xué)
- 探索2024:財(cái)務(wù)報(bào)表分析專業(yè)培訓(xùn)資料
- 雙減背景下基于核心素養(yǎng)小學(xué)語文閱讀提升實(shí)踐研究結(jié)題報(bào)告
- 心電圖使用 課件
評(píng)論
0/150
提交評(píng)論