高二數(shù)學(xué)知識點歸納小總結(jié)_第1頁
高二數(shù)學(xué)知識點歸納小總結(jié)_第2頁
高二數(shù)學(xué)知識點歸納小總結(jié)_第3頁
高二數(shù)學(xué)知識點歸納小總結(jié)_第4頁
高二數(shù)學(xué)知識點歸納小總結(jié)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、高二數(shù)學(xué)知識點歸納小總結(jié) 只有高效的,才可以很快的掌握知識的重難點。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能很快的掌握知識。下面給大家分享一些關(guān)于知識點歸納小總結(jié),希望對大家有所幫助。 極值的定義: (1)極大值:一般地,設(shè)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x) (2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。 極值的性質(zhì): (1)極值是一個局部概念,由定義知道,極值只是某個

2、點的函數(shù)值與它附近點的函數(shù)值比擬是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小; (2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個; (3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值; (4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得值、最小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。 求函數(shù)f(x)的極值的步驟: (1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x); (2)求方程f(x)=0的根; (3)用函數(shù)的導(dǎo)數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成假設(shè)干小開區(qū)間,并列成表格,檢查f(x)在方程根左右的值的符號

3、,如果左正右負(fù),那么f(x)在這個根處取得極大值;如果左負(fù)右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),那么f(x)在這個根處無極值。 1.函數(shù)的奇偶性 (1)假設(shè)f(x)是偶函數(shù),那么f(x)=f(-x); (2)假設(shè)f(x)是奇函數(shù),0在其定義域內(nèi),那么f(0)=0(可用于求參數(shù)); (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)0); (4)假設(shè)所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性; (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性; 2.復(fù)合函數(shù)的有關(guān)問題 (1)復(fù)合

4、函數(shù)定義域求法:假設(shè)的定義域為a,b,其復(fù)合函數(shù)fg(x)的定義域由不等式ag(x)b解出即可;假設(shè)fg(x)的定義域為a,b,求f(x)的定義域,相當(dāng)于xa,b時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原那么。 (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定; 3.函數(shù)圖像(或方程曲線的對稱性) (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上; (2)證明圖像c1與c2的對稱性,即證明c1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然; (3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲

5、線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲線c1:f(x,y)=0關(guān)于點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0; (5)假設(shè)函數(shù)y=f(x)對xr時,f(a+x)=f(a-x)恒成立,那么y=f(x)圖像關(guān)于直線x=a對稱; (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱; 4.函數(shù)的周期性 (1)y=f(x)對xr時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,那么y=f(x)是周期為2a的周期函數(shù); (2)假設(shè)y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周

6、期為2a的周期函數(shù); (3)假設(shè)y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,那么f(x)是周期為4a的周期函數(shù); (4)假設(shè)y=f(x)關(guān)于點(a,0),(b,0)對稱,那么f(x)是周期為2的周期函數(shù); (5)y=f(x)的圖象關(guān)于直線x=a,x=b(ab)對稱,那么函數(shù)y=f(x)是周期為2的周期函數(shù); (6)y=f(x)對xr時,f(x+a)=-f(x)(或f(x+a)=,那么y=f(x)是周期為2的周期函數(shù); 5.方程k=f(x)有解kd(d為f(x)的值域); 一、集合、簡易邏輯(14課時,8個) 1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8

7、.充要條件。 二、函數(shù)(30課時,12個) 1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。 三、數(shù)列(12課時,5個) 1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。 四、三角函數(shù)(46課時,17個) 1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的根本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正

8、切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。 五、平面向量(12課時,8個) 1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。 六、不等式(22課時,5個) 1.不等式;2.不等式的根本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。 七、直線和圓的方程(22課時,12個) 1.直線的傾斜角和斜

9、率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。 八、圓錐曲線(18課時,7個) 1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。 九、直線、平面、簡單何體(36課時,28個) 1.平面及根本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平

10、面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。 十、排列、組合、二項式定理(

11、18課時,8個) 1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。 十一、概率(12課時,5個) 1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗。 選修(24個) 十二、概率與統(tǒng)計(14課時,6個) 1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。 十三、極限(12課時,6個) 1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四那么運算;6.函數(shù)的連續(xù)性。 十四、導(dǎo)數(shù)(18課時,8個) 1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論