下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、MATLAB以下報(bào)告完成的是大作業(yè)第七題:7. Simuli nk仿真在高等數(shù)學(xué)課程中的應(yīng)用21130223宋沛儒基于MATLAB/Simulink對(duì)Lorenz系統(tǒng)仿真研究21130223 宋沛儒1.引言1963年Lorenz通過(guò)觀察大量大氣現(xiàn)象并進(jìn)行數(shù)值實(shí)驗(yàn)和理論思考,得到了一系列混沌運(yùn)動(dòng)的基本特征, 提出了第一個(gè)奇異吸引子Lorenz吸引子1,Lorenz通過(guò)計(jì)算機(jī)模擬一個(gè)由三階微分方程描 述的天氣模型時(shí)發(fā)現(xiàn),在某些條件下同一個(gè)系統(tǒng)可以表現(xiàn)出非周期的無(wú)規(guī)則行為。Lorenz揭示了一系列混沌運(yùn)動(dòng)的基本特征,成為后人研究混沌理論的基石和起點(diǎn),具有非常重要的意義。Lorenz系統(tǒng)方程如下:&a
2、mp; a(y x),(1)& cx y xz,& xy bz.其中,a,b,c為正的實(shí)常數(shù)。本人利用了數(shù)學(xué)工具 matlab,對(duì)Lorenz系統(tǒng)進(jìn)行了仿真研究,加深了對(duì)其的認(rèn)知。2.matlab 求解 Lorenz 系統(tǒng)首先創(chuàng)建文件“ Lorenz.m ”定義Lorenz方程,假設(shè)固定a=10,b=2.6667,c=30,程序如下:fun cti ondx=Lore nz(t,x)dx=-10*(x(1)-x(2);30*x(1)-x (2)-x(1)*x(3);x(1)*x (2)-2.6667*x(3);end然后利用ode45( Runge-Kutta算法)命令求解Lo
3、renz方程并繪制圖形,初值取x=y=z=0.1,程序如下:>> cif>> x0=0.1,0.1,0.1;>> t,x=ode45('Lore nz',0,100,x0);>> sub plot(2,2,1)>> plot(x(:,1),x(:,3)>> title('(a)')>> sub plot(2,2,2)>> plot(x(:,2),x(:,3)>> title('(b)')>> sub plot(2,2,3)>
4、;> plot(x(:,1),x(:,2)>> title('(c)')>> sub plot(2,2,4)>> plot3(x(:,1),x(:,2),x(:,3)>> title('(d)')運(yùn)行后,得如下波形:TOO500 soI1冋4020河Ki 0 K. 帥S'Q .50圖中,(a)為L(zhǎng)orenz混沌吸引子在X-Z平面上的投影,(b)為其在y-z平面上的投影,(c)為其在x-y平面上的投影,(d)為L(zhǎng)orenz混沌吸引子的三維圖。四張圖都類似于“ 8”字形。3. Lorenz系統(tǒng)對(duì)初值的敏感
5、性此時(shí)因?yàn)楣潭▍?shù)a=10, b=2.6667, c=30時(shí),為混沌系統(tǒng),對(duì)初值具有敏感性,初值很小的差異會(huì)引起系統(tǒng)的大變化。 例如在上例中取初值x=z=0.1 , y=0.11,繪制此時(shí)混沌吸引子在X-Z上的投影,并與x=y=z=0.1在同一張圖比較。(初值為x=y=z=0.1時(shí)投影用藍(lán)色, 初值為x=z=0.1,y=0.11時(shí)投影用紅色)程序如下:>> clf>> x0=0.1,0.1,0.1;>> t,x=ode45('ex_lore nz',0,100,x0);>> plot(x(:,1),x(:,3)>> h
6、old on>> x0=0.1,0.11,0.1;>> t,x=ode45('ex_lore nz',0,100,x0);>> plot(x(:,1),x(:,3),'r*')得到圖形如下:可以看到初值y僅變化0.01,圖中紅色與藍(lán)色不重合出明顯。證明 了 Lorenz系統(tǒng)的敏感性。4.matlab對(duì)Lorenz系統(tǒng)的仿真由文獻(xiàn)1可知在上述方程組(1)中,令 x y z 0,當(dāng)c>1時(shí),系統(tǒng)有三個(gè)平衡點(diǎn):S0(O,O,O),S ( Jb(c 1), Jb(c 1),c1),S (Jb(c 1),Jb(c 1),c 1)。
7、當(dāng) c=1 時(shí),系統(tǒng)在原點(diǎn)失去穩(wěn)定。當(dāng)CV1時(shí),原點(diǎn)是唯一的平衡點(diǎn)并且是匯點(diǎn)。利用matlab的Simulink功能,搭建Lorenz系統(tǒng)模型,并探討參數(shù)對(duì)Lorenz系統(tǒng)的影響。仿真模型如圖:-Q*fT|Scopel»QDP«froductSDope2sXYQraphiki”ar2XGnphlKV Graph20020406080100120140160180ProdliCt-T在仿真模型中,取參數(shù)a=10, b=8/3,觀察參數(shù)c取不同值時(shí)系統(tǒng)的運(yùn)行狀態(tài)。根據(jù)文獻(xiàn)1的分析,當(dāng)參數(shù)0VCV1時(shí),只有一個(gè)穩(wěn)定平衡點(diǎn) 0(0,0,0 )。取初值為x=y=z=2,參數(shù)c=0.5
8、,仿真停止時(shí)間取為50,運(yùn)行仿真。得到X、y、z的相圖以及x-z,y-z,x-y的圖形依次如下所示:32.521.510.50rT1.rIlli32.521.510.532.521.510.500501001501J5Q-&0£10'可見(jiàn),系統(tǒng)很快地趨向并穩(wěn)定在 0(0,0,0),驗(yàn)證了前面所述。當(dāng)c>1時(shí),系統(tǒng)有三個(gè)平衡點(diǎn):原點(diǎn)0(0,0,0)和S+, S-。此時(shí)原點(diǎn)的特征值中有正值,因此原點(diǎn)為鞍點(diǎn),是不穩(wěn)定平衡點(diǎn)。當(dāng)1VCV13.926時(shí),不穩(wěn)定流形最終螺旋地趨于與之同側(cè)的平衡點(diǎn)S+或 S-;當(dāng)c=13.926時(shí),不穩(wěn)定流形剛好無(wú)限趨于原點(diǎn)0,即出現(xiàn)同宿軌;
9、當(dāng)013.926時(shí),不穩(wěn)定流形將繞到另一側(cè),最終趨于與之異側(cè)的S+或S-。可見(jiàn),C是一個(gè)同宿分岔點(diǎn)。因此,取初值 x=y=z=2, c=8,仿真停止時(shí)間為50,運(yùn)行仿真,得到X、y、z的相圖以及 X-Z , y-z , x-y的圖形依次如下所示:7654320501001502002503003507654321502002503003504004501210864230040050060070000 100 20010-SH 1 riiji%活C55可以看到,系統(tǒng)趨于與之同側(cè)的平衡點(diǎn) S+或 S-。取初值x=y=z=2, c=18,仿真停止時(shí)間為50,運(yùn)行仿真,得到x、y、z的相圖以及 x-
10、z,y-z,x-y的圖形依次如下所示:10050010001500151510105-500-5,'1 V"1, , . '' -5.1.|1-10'1 '-1 -10.? -1-15-15-20 -20005001000150050010001500302520152010-10-20沼 0-20 1C 010 卻30 r2010T0-10-a)/fl*200 1D 2-0'5030'20IQfiO30'1020-100102030可以看到,系統(tǒng)趨于與之同側(cè)的平衡點(diǎn) S+或 S-。為了觀察c=13.926的同宿分岔點(diǎn)現(xiàn)
11、象,在c=13.926附近不斷嘗試,最終在c= 15.39682328時(shí)觀察到比較明顯的過(guò)渡跡象。取初值x=y=z=2,c=15.39682328,仿真停止時(shí)間為50,運(yùn)行仿真,得到X、y、z的相圖以及X-Z,y-z,x-y的圖形依次如下所示:201515- 111011 110111-11'11.11 111 ! '_ 1 -嚴(yán)-5-1 -'.1 ' ' .5'.1 11'11011P0-r1-5-5II丨N-10-10“I 111:-150500100015000500100015005020£0102020-10010和1
12、(11可以看到,雖然最終軌線趨向于與之同側(cè)的平衡點(diǎn)S+或S-,但302010010 2D 如?115.39682330有著明顯的過(guò)渡跡象??梢酝茰y(cè),當(dāng)c取15.39682328到 間的某一個(gè)數(shù)值時(shí),會(huì)出現(xiàn)同宿軌現(xiàn)象。根據(jù)文獻(xiàn)1,當(dāng)024.74時(shí),S+與 S-變?yōu)椴环€(wěn)定的,也就是說(shuō)系統(tǒng)進(jìn)入“混沌區(qū)”。此時(shí)三個(gè)平衡點(diǎn) O S+、S-都不穩(wěn)定。取初值x=y=z=2, c=30,仿真停止時(shí)間為100,運(yùn)行仿真,得到x、y、z的相圖以及x-z , y-z , x-y的圖形依次如下所示:1001008040200-2060-4040200-208060050010001500200025003000350
13、040004500500010090807060504030201000500100015002000250030003500400045005000eo=0403020100-102C-3C'JCSO 33=100 JO 'SCi咒3CJC可以看到,上述圖形中,軌線繞著 S+若干圈后,又繞著S-若干圈,如此循環(huán),符合文獻(xiàn)1的描述。為了觀察由系統(tǒng)趨向于與之異側(cè)的平衡點(diǎn)向系統(tǒng)的混沌狀態(tài)的 過(guò)渡現(xiàn)象,在c=24.74附近反復(fù)不斷嘗試,最終發(fā)現(xiàn)當(dāng)c=23.299時(shí),可以觀察到明顯的過(guò)渡跡象。因此,取初值x=y=z=2, c=23.299,仿真停止時(shí)間為100,運(yùn)行仿真,得到X、y、z的相圖以及x-z,y-z,x-y的圖形依次如下所示:4040303020201010-10-10-205001000150020002500-20b05001000150020002500504540353025201510505001000150020002500可以看到,在上圖中,軌線看起來(lái)穩(wěn)定在一條圍繞與之異側(cè)的平衡點(diǎn)的軌道上。僅從仿真運(yùn)行的這段時(shí)間,無(wú)法判斷系統(tǒng)是處于混沌 狀態(tài)還是會(huì)趨向于與之異側(cè)的平衡點(diǎn),可以看出明顯的過(guò)渡跡象。5.結(jié)論本文初步了解了 Lorenz系統(tǒng),并簡(jiǎn)單觀察了 Lorenz混沌系統(tǒng)對(duì)初值的敏感性,比較分析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 十六橋課件教學(xué)課件
- 04品牌授權(quán)塔吊品牌授權(quán)使用合同
- 2024年度汽車租賃與售后服務(wù)合同
- 2024年度道路照明工程燈具維修勞務(wù)分包合同
- 2024年屋面瓦鋪設(shè)工程項(xiàng)目合同
- 2024家庭裝飾裝修的合同模板
- 2024年度衛(wèi)星導(dǎo)航系統(tǒng)應(yīng)用合作協(xié)議
- 2024年度軟件開(kāi)發(fā)與測(cè)試合同
- 2024年度知識(shí)產(chǎn)權(quán)許可合同.do
- 2024年度物流配送服務(wù)承包商的選取協(xié)議
- 醫(yī)師定期考核表格參考模板
- 英語(yǔ)人教版三年級(jí)上冊(cè)(教具)動(dòng)物圖卡
- 泥水平衡頂管施工方案
- 民辦非企業(yè)單位(法人)登記申請(qǐng)表08669
- 霍蘭德人格六角形模型(共享內(nèi)容)
- 寶鋼中央研究院創(chuàng)新戰(zhàn)略與運(yùn)行機(jī)制研究
- 建筑CAD測(cè)試多選題
- 支座鑄造工藝設(shè)計(jì)
- 2022年學(xué)校禁毒工作計(jì)劃
- GB-T-30512-2014-汽車禁用物質(zhì)要求
- 生物相容性試驗(yàn)檢測(cè)報(bào)告
評(píng)論
0/150
提交評(píng)論