版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第一章 集合與函數(shù)概念第一節(jié) 集合一、集合有關(guān)概念1. 集合的含義2. 集合的中元素的三個(gè)特性:(1) 元素的確定性如:世界上最高的山(2) 元素的互異性如:由HAPPY的字母組成的集合H,A,P,Y(3) 元素的無序性如:a,b,c和a,c,b是表示同一個(gè)集合3.集合的表示: 如:我校的籃球隊(duì)員,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的籃球隊(duì)員,B=1,2,3,4,5(2) 集合的表示方法:列舉法與描述法。u 注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集) 記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R1) 列舉法:a,b,c2) 描述法:將集合
2、中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。xÎR| x-3>2 ,x| x-3>23) 語言描述法:例:不是直角三角形的三角形4) Venn圖:4、集合的分類:有限集 含有有限個(gè)元素的集合(1) 無限集 含有無限個(gè)元素的集合(2) 空集 不含任何元素的集合例:x|x2=5二、集合間的基本關(guān)系1.“包含”關(guān)系子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2“相等”關(guān)系:A=B (55,且55,則5=5)實(shí)例:設(shè) A=x|x2-1=0 B=-1,1 “元素相同則兩集合相等”即
3、: 任何一個(gè)集合是它本身的子集。AÍA真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作AB(或BA)如果 AÍB, BÍC ,那么 AÍC 如果AÍB 同時(shí) BÍA 那么A=B3. 不含任何元素的集合叫做空集,記為規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集三、集合的運(yùn)算運(yùn)算類型交 集并 集補(bǔ) 集定 義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集記作AB(讀作A交B),即AB=x|xA,且xB由所有屬于集合A或?qū)儆诩?/p>
4、B的元素所組成的集合,叫做A,B的并集記作:AB(讀作A并B),即AB =x|xA,或xB)設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)SA記作,即CSA=韋恩圖示SA性 質(zhì)AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 第二節(jié) 函數(shù)的有關(guān)概念1函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:AB為從集
5、合A到集合B的一個(gè)函數(shù)記作: y=f(x),xA其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xA 叫做函數(shù)的值域注意:1定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零, (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)
6、際問題有意義.u 相同函數(shù)的判斷方法:表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));定義域一致 (兩點(diǎn)必須同時(shí)具備)(見課本21頁相關(guān)例2)2值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (xA)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x A)的圖象C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . (2) 畫法A、 描點(diǎn)法:B、 圖象變換法常用變換方法有三種1) 平移
7、變換2) 伸縮變換3) 對(duì)稱變換4區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示5映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”對(duì)于映射f:AB來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。6.分段函數(shù) (1)在定義域的不同部分
8、上有不同的解析表達(dá)式的函數(shù)。(2)各部分的自變量的取值情況(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集補(bǔ)充:復(fù)合函數(shù)如果y=f(u)(uM),u=g(x)(xA),則 y=fg(x)=F(x)(xA) 稱為f、g的復(fù)合函數(shù)。 第三節(jié) 函數(shù)的性質(zhì)1.函數(shù)的單調(diào)性(局部性質(zhì))(1)增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說f(x)在區(qū)間D上是增函數(shù).區(qū)間D稱為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1<x2 時(shí),都有f
9、(x1)f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);(2) 圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A) 定義法: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 變形(通常是因式分解和配方); 定號(hào)(即判斷差f(x1)f(x2)的正負(fù)); 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性)(B)圖象法(從圖象上看
10、升降)(C)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)fg(x)的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8函數(shù)的奇偶性(整體性質(zhì))(1)偶函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做偶函數(shù)(2)奇函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么f(x)就叫做奇函數(shù)(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱利用定義判斷函數(shù)奇偶性的步驟:首先確定函數(shù)的定義域,
11、并判斷其是否關(guān)于原點(diǎn)對(duì)稱;確定f(x)與f(x)的關(guān)系;作出相應(yīng)結(jié)論:若f(x) = f(x) 或 f(x)f(x) = 0,則f(x)是偶函數(shù);若f(x) =f(x) 或 f(x)f(x) = 0,則f(x)是奇函數(shù)注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-x)±f(x)=0或f(x)f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求
12、出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.(2)求函數(shù)的解析式的主要方法有:1) 湊配法2) 待定系數(shù)法3) 換元法4) 消參法10函數(shù)最大(?。┲担ǘx見課本p36頁) 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲?利用圖象求函數(shù)的最大(?。┲?利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞增,在區(qū)間b,c上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞減,在區(qū)間b,c上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);第二章 基本初等函數(shù)一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運(yùn)算1根式的概念:一般地,如
13、果,那么叫做的次方根,其中>1,且*u 負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2分?jǐn)?shù)指數(shù)冪正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:,u 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義3實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)(1)·;(2);(3)(二)指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域?yàn)镽注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和12、指數(shù)函數(shù)的圖象和性質(zhì)a>10<a<1定義域 R定義域 R值域y0值域y0在R上單調(diào)遞增在R上單調(diào)遞減非奇非偶函數(shù)非奇非偶函數(shù)函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖
14、象都過定點(diǎn)(0,1)注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:(1)在a,b上,值域是或;(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);(3)對(duì)于指數(shù)函數(shù),總有;二、對(duì)數(shù)函數(shù)(一)對(duì)數(shù)1對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:( 底數(shù), 真數(shù), 對(duì)數(shù)式)說明: 注意底數(shù)的限制,且; ; 注意對(duì)數(shù)的書寫格式兩個(gè)重要對(duì)數(shù): 常用對(duì)數(shù):以10為底的對(duì)數(shù); 自然對(duì)數(shù):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù)u 指數(shù)式與對(duì)數(shù)式的互化 冪值 真數(shù) N b 底數(shù) 指數(shù) 對(duì)數(shù)(二)對(duì)數(shù)的運(yùn)算性質(zhì)如果,且,那么: ·; ; 注意:換底公式(,且;,且;)利用換底公式推導(dǎo)下面的結(jié)論(1);(2)(三)對(duì)數(shù)函數(shù)1
15、、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+)注意: 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:, 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù) 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且2、對(duì)數(shù)函數(shù)的性質(zhì):a>10<a<1定義域x0定義域x0值域?yàn)镽值域?yàn)镽在R上遞增在R上遞減函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0)三、 冪函數(shù)1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù)2、冪函數(shù)性質(zhì)歸納(1)所有的冪函數(shù)在(0,+)都有定義并且圖象都過點(diǎn)(1,1);(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù)特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù)在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸第三章 函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點(diǎn)1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)3、函數(shù)零點(diǎn)的求法: (代數(shù)法)求方程的實(shí)數(shù)根; (幾何法)對(duì)于不能用求根公式的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園心理健康合同:校園心理健康服務(wù)承包協(xié)議
- 新疆維吾爾自治區(qū)勞動(dòng)合同范本樣本
- 山林承包合同使用指南
- 2024年范文生態(tài)園土地承包合同
- 2024試析《物業(yè)服務(wù)合同》的解除或終止問題
- 2024小吃加盟合同范本
- 物業(yè)管理服務(wù)協(xié)議參考樣本
- 個(gè)人建房施工合同范本
- 2024廣告設(shè)計(jì)類合同范本
- 解除版權(quán)買賣合同協(xié)議
- 難點(diǎn)詳解人教版九年級(jí)化學(xué)上冊(cè)第一單元走進(jìn)化學(xué)世界專題訓(xùn)練練習(xí)題(含答案詳解版)
- 財(cái)務(wù)管理委托代理會(huì)計(jì)服務(wù) 投標(biāo)文件(技術(shù)方案)
- 2024年全國高考Ⅰ卷英語試題及答案
- 期刊編輯的學(xué)術(shù)期刊編輯規(guī)范考核試卷
- T-CCSAS014-2022《化工企業(yè)承包商安全管理指南》
- 電梯安全總監(jiān)和安全員的任命文件
- SL-T+62-2020水工建筑物水泥灌漿施工技術(shù)規(guī)范
- 2024年安徽省普通高中學(xué)業(yè)水平選擇性考試 歷史試卷
- 電子商務(wù)師職業(yè)技能等級(jí)證書培訓(xùn)方案
- JBT 14615-2024 內(nèi)燃機(jī) 活塞運(yùn)動(dòng)組件 清潔度限值及測(cè)定方法(正式版)
- DL5009.2-2013電力建設(shè)安全工作規(guī)程第2部分:電力線路
評(píng)論
0/150
提交評(píng)論