人教版二次根式全章教案_第1頁
人教版二次根式全章教案_第2頁
人教版二次根式全章教案_第3頁
人教版二次根式全章教案_第4頁
人教版二次根式全章教案_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第十六章 二次根式 教材內(nèi)容 本單元教學(xué)的主要內(nèi)容: 二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式 教學(xué)目標 1知識及技能 (1)理解二次根式的概念 (2)理解(a0)是一個非負數(shù),()2=a(a0),=a(a0) (3)掌握·(a0,b0),=·;=(a0,b>0),=(a0,b>0) (4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減 2過程及方法 (1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念再對概念的內(nèi)涵進行分析,得出幾個重要結(jié)論,并運用這些重要結(jié)論進行二次根式的計算和化簡 (2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納

2、法得出二次根式的乘(除)法規(guī)定,并運用規(guī)定進行計算 (3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運用它進行化簡 (4)通過分析前面的計算和化簡結(jié)果,抓住它們的共同特點,給出最簡二次根式的概念利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的 3情感、態(tài)度及價值觀 通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準確計算和化簡的嚴謹?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力 教學(xué)重點 1二次根式(a0)的內(nèi)涵(a0)是一個非負數(shù);()2a(a0);=a(a0)及其運用 2二次根式乘除法的規(guī)定及其運用 3最簡

3、二次根式的概念 4二次根式的加減運算 教學(xué)難點 1對(a0)是一個非負數(shù)的理解;對等式()2a(a0)及=a(a0)的理解及應(yīng)用 2二次根式的乘法、除法的條件限制 3利用最簡二次根式的概念把一個二次根式化成最簡二次根式 單元課時劃分 本單元教學(xué)時間約需11課時,具體分配如下: 161 二次根式 3課時 162 二次根式的乘法 3課時 163 二次根式的加減 3課時 教學(xué)活動、習(xí)題課、小結(jié) 2課時161 二次根式第一課時 教學(xué)內(nèi)容 二次根式的概念及其運用 教學(xué)目標 理解二次根式的概念,并利用(a0)的意義解答具體題目 提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題 教學(xué)重難點關(guān)鍵 1重點:形如

4、(a0)的式子叫做二次根式的概念; 2難點及關(guān)鍵:利用“(a0)”解決具體問題 教學(xué)過程 一、復(fù)習(xí)引入 活動1、填空,完成課本思考1:活動2、觀察其形式上的共同點,被開方數(shù)的共同點,說明各式所表示的共同意義.活動3、給出二次根式的定義,介紹二次根式的讀法.活動4、思考下列問題:的運算結(jié)果是3,是不是二次根式?3是不是?定義中為什么要加0?若a<0,表示什么?有無意義?當(dāng) a=0時,表示什么?結(jié)果是什么?當(dāng) a>0時,表示什么?可不可能為負數(shù)?(0)是什么樣的數(shù)呢?可由學(xué)生思考后進行討論,然后教師訂正,最后師生共同歸納得出性質(zhì)1:(0)是一個非負數(shù) 二、探索新知 例1下列式子,哪些是

5、二次根式,哪些不是二次根式:、(x>0)、-、(x0,y0) 分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x>0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時,在實數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x 當(dāng)x時,在實數(shù)范圍內(nèi)有意義 三、鞏固練習(xí) 教材P3練習(xí)1、2 四、應(yīng)用拓展 例3當(dāng)x是多少時,+在實數(shù)范圍內(nèi)有意義? 分析:要使+在實數(shù)范圍內(nèi)有意義,必須同時滿足中的0和中的x+10 解:依題意,得 由得:x- 由得:x-1

6、當(dāng)x-且x-1時,+在實數(shù)范圍內(nèi)有意義 例4(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 五、歸納小結(jié)(學(xué)生活動,老師點評) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號 2要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負數(shù) 六、布置作業(yè) 習(xí)題16.1第1、5題16.1 二次根式(2)第二課時 教學(xué)內(nèi)容 1(a0)是一個非負數(shù); 2()2=a(a0) 教學(xué)目標 理解(a0)是一個非負數(shù)和()2=a(a0),并利用它們進行計算和化簡 通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個非負數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方

7、根的意義導(dǎo)出()2=a(a0);最后運用結(jié)論嚴謹解題 教學(xué)重難點關(guān)鍵 1重點:(a0)是一個非負數(shù);()2=a(a0)及其運用 2難點、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個非負數(shù);用探究的方法導(dǎo)出()2=a(a0) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)口答 1什么叫二次根式? 2當(dāng)a0時,叫什么?當(dāng)a<0時,有意義嗎? 老師點評(略) 二、探究新知 議一議:(學(xué)生分組討論,提問解答) (a0)是一個什么數(shù)呢? 老師點評:根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出 (a0)是一個非負數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_

8、;()2=_ 老師點評:是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個平方等于4的非負數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1 計算 1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2= 三、鞏固練習(xí) 計算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、應(yīng)用拓展 例2 計算1()2(x0) 2()2 3()2 4()2分析:(1)因為x0,所以x+1>0;

9、(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4題都可以運用()2=a(a0)的重要結(jié)論解題 解:(1)因為x0,所以x+1>0 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又(2x-3)204x2-12x+90,()2=4x2-12x+9例3在實數(shù)范圍內(nèi)分解下列因式: (1)x2-3 (2)x4-

10、4 (3) 2x2-3分析:(略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握: 1(a0)是一個非負數(shù); 2()2=a(a0);反之:a=()2(a0) 六、布置作業(yè) 習(xí)題16.1第2(1)-(4)、4、7題16.1 二次根式(3)第三課時 教學(xué)內(nèi)容 a(a0) 教學(xué)目標 理解=a(a0)并利用它進行計算和化簡 通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個結(jié)論解決具體問題 教學(xué)重難點關(guān)鍵 1重點:a(a0) 2難點:探究結(jié)論 3關(guān)鍵:講清a0時,a才成立 教學(xué)過程 一、復(fù)習(xí)引入 老師口述并板收上兩節(jié)課的重要內(nèi)容; 1形如(a0)的式子叫做二次根式; 2(a0)是一個非負數(shù); 3()2a(a0) 那么,我

11、們猜想當(dāng)a0時,=a是否也成立呢?下面我們就來探究這個問題 二、探究新知 (學(xué)生活動)填空: =_;=_;=_; =_;=_;=_ (老師點評):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化簡 (1) (2) (3) (4)分析:因為(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運用=a(a0)去化簡解:(1)=3 (2)=4 (3)=5 (4)=3 三、鞏固練習(xí) 教材P4練習(xí)2 四、應(yīng)用拓展 例2 填空:當(dāng)a0時,=_;當(dāng)a<0時,=_,并根據(jù)這一性質(zhì)回答下列問題 (1)若=

12、a,則a可以是什么數(shù)? (2)若=-a,則a可以是什么數(shù)? (3)>a,則a可以是什么數(shù)? 分析:=a(a0),要填第一個空格可以根據(jù)這個結(jié)論,第二空格就不行,應(yīng)變形,使“( )2”中的數(shù)是正數(shù),因為,當(dāng)a0時,=,那么-a0 (1)根據(jù)結(jié)論求條件;(2)根據(jù)第二個填空的分析,逆向思想;(3)根據(jù)(1)、(2)可知=a,而a要大于a,只有什么時候才能保證呢?a<0 解:(1)因為=a,所以a0; (2)因為=-a,所以a0;(3)因為當(dāng)a0時=a,要使>a,即使a>a所以a不存在;當(dāng)a<0時,=-a,要使>a,即使-a>a,a<0綜上,a<

13、0例3當(dāng)x>2,化簡-分析:(略) 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:=a(a0)及其運用,同時理解當(dāng)a<0時,a的應(yīng)用拓展 六、布置作業(yè) 習(xí)題16.1第2(5)-(8)、3、8、9題162 二次根式的乘除第一課時 教學(xué)內(nèi)容 ·(a0,b0),反之=·(a0,b0)及其運用 教學(xué)目標 理解·(a0,b0),=·(a0,b0),并利用它們進行計算和化簡 由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出·(a0,b0)并運用它進行計算;利用逆向思維,得出=·(a0,b0)并運用它進行解題和化簡 教學(xué)重難點關(guān)鍵 重點:·(a0,b0),=

14、3;(a0,b0)及它們的運用 難點:發(fā)現(xiàn)規(guī)律,導(dǎo)出·(a0,b0) 關(guān)鍵:要講清(a<0,b<0)=,如=或=× 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題 1填空 (1)×=_,=_; (2)×=_,=_ (3)×=_,=_ 參考上面的結(jié)果,用“>、<或”填空 ×_,×_,×_ 2利用計算器計算填空 (1)×_,(2)×_, (3)×_,(4)×_, (5)×_ 老師點評(糾正學(xué)生練習(xí)中的錯誤) 二、探索新知 (學(xué)生活動)讓

15、3、4個同學(xué)上臺總結(jié)規(guī)律 老師點評:(1)被開方數(shù)都是正數(shù); (2)兩個二次根式的乘除等于一個二次根式,并且把這兩個二次根式中的數(shù)相乘,作為等號另一邊二次根式中的被開方數(shù) 一般地,對二次根式的乘法規(guī)定為 ·(a0,b0) 反過來: =·(a0,b0) 例1計算 (1)× (2)× (3)× (4)× 分析:直接利用·(a0,b0)計算即可 解:(1)×=(2)×=(3)×=9(4)×= 例2 化簡(1) (2) (3)(4) (5) 分析:利用=·(a0,b0)直接化簡即可

16、解:(1)=×=3×4=12 (2)=×=4×9=36 (3)=×=9×10=90 (4)=×=××=3xy (5)=×=3 三、鞏固練習(xí) (1)計算(學(xué)生練習(xí),老師點評) × 3×2 ·(2) 化簡: ; ; ; ; 教材P7練習(xí) 四、應(yīng)用拓展 例3判斷下列各式是否正確,不正確的請予以改正: (1) (2)×=4××=4×=4=8 解:(1)不正確 改正:=×=2×3=6 (2)不正確改正:×=

17、×=4 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)·=(a0,b0),=·(a0,b0)及其運用 六、布置作業(yè) 習(xí)題16.2第1,39(1)(2),6題。162 二次根式的乘除(2)第二課時 教學(xué)內(nèi)容 =(a0,b>0),反過來=(a0,b>0)及利用它們進行計算和化簡 教學(xué)目標 理解=(a0,b>0)和=(a0,b>0)及利用它們進行運算 利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動,發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進行計算和化簡 教學(xué)重難點關(guān)鍵 1重點:理解=(a0,b>0),=(a0,b>0)及利用它們進行計算和化簡

18、 2難點關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_規(guī)律:_;_;_;_ 3利用計算器計算填空: (1)=_,(2)=_,(3)=_,(4)=_ 規(guī)律:_;_;_;_。 每組推薦一名學(xué)生上臺闡述運算結(jié)果 (老師點評) 二、探索新知 剛才同學(xué)們都練習(xí)都很好,上臺的同學(xué)也回答得十分準確,根據(jù)大家的練習(xí)和回答,我們可以得到: 一般地,對二次根式的除法規(guī)定:=(a0,b>0),反過來,=(a0,b>0) 下面我們利

19、用這個規(guī)定來計算和化簡一些題目 例1計算:(1) (2) (3) (4) 分析:上面4小題利用=(a0,b>0)便可直接得出答案解:(1)=2 (2)=×=2(3)=2(4)=2 例2化簡: (1) (2) (3) (4) 分析:直接利用=(a0,b>0)就可以達到化簡之目的解:(1)= (2)= (3)= (4)= 三、鞏固練習(xí) 教材P10 練習(xí)1 四、應(yīng)用拓展 例3已知,且x為偶數(shù),求(1+x)的值分析:式子=,只有a0,b>0時才能成立因此得到9-x0且x-6>0,即6<x9,又因為x為偶數(shù),所以x=8 解:由題意得,即 6<x9 x為偶數(shù)

20、x=8 原式=(1+x) =(1+x) =(1+x)= 當(dāng)x=8時,原式的值=6 五、歸納小結(jié) 本節(jié)課要掌握=(a0,b>0)和=(a0,b>0)及其運用 六、布置作業(yè) 習(xí)題16.2第2,3(3)(4),7題。16.2 二次根式的乘除(3)第三課時 教學(xué)內(nèi)容 最簡二次根式的概念及利用最簡二次根式的概念進行二次根式的化簡運算 教學(xué)目標 理解最簡二次根式的概念,并運用它把不是最簡二次根式的化成最簡二次根式 通過計算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點來檢驗最后結(jié)果是否滿足最簡二次根式的要求 重難點關(guān)鍵 1重點:最簡二次根式的運用 2難點關(guān)鍵:會判斷這個二次根式是否是最

21、簡二次根式 教學(xué)過程 一、復(fù)習(xí)引入 1計算(1),(2),(3) 老師點評:=,=,= 2現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_ 它們的比是 二、探索新知 觀察上面計算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點: 1被開方數(shù)不含分母; 2被開方數(shù)中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個條件的二次根式,叫做最簡二次根式 那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式 學(xué)生分組討論,推薦34個人到黑板上板書老師點評:不是 例1(1) ; (2) ; (3) 三、鞏固練習(xí) 教材P10 練習(xí)2、

22、3 四、應(yīng)用拓展例3觀察下列各式,通過分母有理數(shù),把不是最簡二次根式的化成最簡二次根式:=-1, 同理可得:=-, 從計算結(jié)果中找出規(guī)律,并利用這一規(guī)律計算 (+)(+1)的值 分析:由題意可知,本題所給的是一組分母有理化的式子,因此,分母有理化后就可以達到化簡的目的 解:原式=(-1+-+-+-)×(+1) =(-1)(+1) =2002-1=2001 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運用 六、布置作業(yè) 習(xí)題16.2第5,8,9,10題16.3 二次根式的加減(1)第一課時 教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標 理解和掌握二次根式加減的方法 先提出問題,分析問題,在

23、分析問題中,滲透對二次根式進行加減的方法的理解再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡 重難點關(guān)鍵 1重點:二次根式化簡為最簡根式 2難點關(guān)鍵:會判定是否是最簡二次根式 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動:計算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教師點評:上面題目的結(jié)果,實際上是我們以前所學(xué)的同類項合并同類項合并就是字母不變,系數(shù)相加減 二、探索新知 學(xué)生活動:計算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點評: (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問題嗎? 2+3=(2+3)=5

24、(2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+ =(3-2)+ 因此,二次根式的被開方數(shù)相同是可以合并的,如2及表面上看是不相同的,但它們可以合并嗎?可以的 (板書)3+=3+2=5 3+=3+3=6 所以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進行合并 例1計算 (1)+ (2)+ 分析:第一步,將不是最簡二次根式的項化為最簡二次根式;第二步,將相同的最簡二次根式進行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2計算 (

25、1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、鞏固練習(xí) 教材P13 練習(xí)1、2 四、應(yīng)用拓展 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 分析:本題首先將已知等式進行變形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3其次,根據(jù)二次根式的加減運算,先把各項化成最簡二次根式,再合并同類二次根式,最后代入求值 解:4x2+y2-4x-6y+10=0 4x2-4x+1+y2-6y+9=0 (2x-1)2+(y-3)2=0 x=,y=3 原

26、式=+y2-x2+5x =2x+-x+5 =x+6 當(dāng)x=,y=3時, 原式=×+6=+3 五、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進行合并 六、布置作業(yè) 習(xí)題16.3第1,2,3題。16.3 二次根式的加減(2)第二課時 教學(xué)內(nèi)容 利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題 教學(xué)目標 運用二次根式、化簡解應(yīng)用題 通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進行合并后解應(yīng)用題 重難點關(guān)鍵 講清如何解答應(yīng)用題既是本節(jié)課的重點,又是本節(jié)課的難點、關(guān)鍵點 教學(xué)過程 一、復(fù)習(xí)引入 上節(jié)課,我們已經(jīng)講了二次根式如何加減的問題,我們把它歸

27、為兩個步驟:第一步,先將二次根式化成最簡二次根式;第二步,再將被開方數(shù)相同的二次根式進行合并二、探索新知例1如圖所示的RtABC中,B=90°,點P從點B開始沿BA邊以1厘米/秒的速度向點A移動;同時,點Q也從點B開始沿BC邊以2厘米/秒的速度向點C移動問:幾秒后PBQ的面積為35平方厘米?(結(jié)果用最簡二次根式表示) 分析:設(shè)x秒后PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值 解:設(shè)x 后PBQ的面積為35平方厘米 則有PB=x,BQ=2x 依題意,得:x·2x=35 x2=35 x= 所以秒后PBQ的面積為35平方厘米 答:秒后PBQ的面積為35平方厘米 三、鞏固練習(xí) 教材P13 練習(xí)3 四、應(yīng)用拓展 例3若最簡根式及根式是同類二次根式,求a、b的值(同類二次根式就是被開方數(shù)相同的最簡二次根式) 分析:同類二次根式是指幾個二次根式化成最簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論