最優(yōu)控制理論_第1頁
最優(yōu)控制理論_第2頁
最優(yōu)控制理論_第3頁
最優(yōu)控制理論_第4頁
最優(yōu)控制理論_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、最優(yōu)控制理論    最優(yōu)控制理論概述 最優(yōu)控制理論是現(xiàn)代控制理論的一個主要分支,著重于研究使控制系統(tǒng)的性能指標實現(xiàn)最優(yōu)化的基本條件和綜合方法。最優(yōu)控制理論研究的內(nèi)容 最優(yōu)控制理論所研究的問題可以概括為:對一個受控的動力學系統(tǒng)或運動過程,從一類允許的控制方案中找出一個最優(yōu)的控制方案,使系統(tǒng)的運動在由某個初始狀態(tài)轉(zhuǎn)移到指定的目標狀態(tài)的同時,其性能指標值為最優(yōu)。這類問題廣泛存在于技術領域或社會問題中。最優(yōu)控制理論的基本思想與常用方法最優(yōu)控制理論是現(xiàn)代控制理論中的核心內(nèi)容之一,其主要實質(zhì)是,在滿足一定約束條件下尋求最優(yōu)控制規(guī)律或控制策略,使得系統(tǒng)在規(guī)定的性能指標

2、(目標函數(shù))下具有最優(yōu)值。動態(tài)規(guī)劃、最大值理論和變分法是最優(yōu)控制理論的基本內(nèi)容和常用方法。動態(tài)規(guī)劃是貝爾曼于二十世紀五十年代中期為解決多階段決策過程而提出來的。這個方法的關鍵是建立在他所提出的“最優(yōu)性原理”基礎之上的,這個原理歸結(jié)為用一組基本的遞推關系式使過程連續(xù)的最優(yōu)轉(zhuǎn)移它可以求這樣的最優(yōu)解,這些最優(yōu)解是以計算每個決策的后果并對今后的決策制定最優(yōu)決策為基礎的,但在求最優(yōu)解時要按倒過來的順序進行,即從最終狀態(tài)開始到初始狀態(tài)為止。龐特亞金于19561958年間創(chuàng)立的最大值原理是經(jīng)典最優(yōu)控制理論的重要組成部分和控制理論發(fā)展史上的一個里程碑。它是解決最優(yōu)控制問題的一種最普遍的有效方法。由于它放寬了求

3、解問題的前提條件,使得許多古典變分法和動態(tài)規(guī)劃法無法解決的工程技術問題得到了解決。解決最優(yōu)控制問題的主要方法 為了解決最優(yōu)控制問題,必須建立描述受控運動過程的運動方程,給出控制變量的允許取值范圍,指定運動過程的初始狀態(tài)和目標狀態(tài),并且規(guī)定一個評價運動過程品質(zhì)優(yōu)劣的性能指標。通常,性能指標的好壞取決于所選擇的控制函數(shù)和相應的運動狀態(tài)。系統(tǒng)的運動狀態(tài)受到運動方程的約束,而控制函數(shù)只能在允許的范圍內(nèi)選取。因此,從數(shù)學上看,確定最優(yōu)控制問題可以表述為:在運動方程和允許控制范圍的約束下,對以控制函數(shù)和運動狀態(tài)為變量的性能指標函數(shù)(稱為泛函)求取極值(極大值或極小值)。解決最優(yōu)控制問題的主要方法有古典變分

4、法、極大值原理和動態(tài)規(guī)劃。一、古典變分法研究對泛函求極值的一種數(shù)學方法。古典變分法只能用在控制變量的取值范圍不受限制的情況。在許多實際控制問題中,控制函數(shù)的取值常常受到封閉性的邊界限制,如方向舵只能在兩個極限值范圍內(nèi)轉(zhuǎn)動,電動機的力矩只能在正負的最大值范圍內(nèi)產(chǎn)生等。因此,古典變分法對于解決許多重要的實際最優(yōu)控制問題,是無能為力的。二、極大值原理極大值原理,是分析力學中哈密頓方法的推廣。極大值原理的突出優(yōu)點是可用于控制變量受限制的情況,能給出問題中最優(yōu)控制所必須滿足的條件。三、動態(tài)規(guī)劃動態(tài)規(guī)劃是數(shù)學規(guī)劃的一種,同樣可用于控制變量受限制的情況,是一種很適合于在計算機上進行計算的比較有效的方法。最優(yōu)

5、控制理論已被應用于綜合和設計最速控制系統(tǒng)、最省燃料控制系統(tǒng)、最小能耗控制系統(tǒng)、線性調(diào)節(jié)器等。 最優(yōu)化技術 最優(yōu)控制的實現(xiàn)離不開最優(yōu)化技術,最優(yōu)化技術是研究和解決最優(yōu)化問題的一門學科,它研究和解決如何從一切可能的方案中尋找最優(yōu)的方案。也就是說,最優(yōu)化技術是研究和解決如何將最優(yōu)化問題表示為數(shù)學模型以及如何根據(jù)數(shù)學模型盡快求出其最優(yōu)解這兩大問題。一般而言,用最優(yōu)化方法解決實際工程問題可分為三步進行:根據(jù)所提出的最優(yōu)化問題,建立最優(yōu)化問題的數(shù)學模型,確定變量,列出約束條件和目標函數(shù);對所建立的數(shù)學模型進行具體分析和研究,選擇合適的最優(yōu)化方法;根據(jù)最優(yōu)化方法的算法列出程序框圖和編寫程序,用計算機求出最優(yōu)

6、解,并對算法的收斂性、通用性、簡便性、計算效率及誤差等作出評價。最優(yōu)化問題的基本求解方法 所謂最優(yōu)化問題,就是尋找一個最優(yōu)控制方案或最優(yōu)控制規(guī)律,使系統(tǒng)能最優(yōu)地達到預期的目標。在最優(yōu)化問題的數(shù)學模型建立后,主要問題是如何通過不同的求解方法解決尋優(yōu)問題。一般而言,最優(yōu)化方式有離線靜態(tài)優(yōu)化方式和在線動態(tài)優(yōu)化方式,而最優(yōu)化問題的求解方法大致可分為四類:1.解析法對于目標函數(shù)及約束條件具有簡單而明確的數(shù)學表達式的最優(yōu)化問題,通??刹捎媒馕龇▉斫鉀Q。其求解方法是先按照函數(shù)極值的必要條件,用數(shù)學分析方法求出其解析解,然后按照充分條件或問題的實際物理意義間接地確定最優(yōu)解。2.數(shù)值解法(直接法)對于目標函數(shù)較

7、為復雜或無明確的數(shù)學表達式或無法用解析法求解的最優(yōu)化問題,通??刹捎弥苯臃▉斫鉀Q。直接法的基本思想,就是用直接搜索方法經(jīng)過一系列的迭代以產(chǎn)生點的序列,使之逐步接近到最優(yōu)點。直接法常常是根據(jù)經(jīng)驗或?qū)嶒灦玫降摹?.解析與數(shù)值相結(jié)合的尋優(yōu)方法4.網(wǎng)絡最優(yōu)化方法這種方法以網(wǎng)絡圖作為數(shù)學模型,用圖論方法進行搜索的尋優(yōu)方法。優(yōu)化方法的新進展 1.在線優(yōu)化方法基于對象數(shù)學模型的離線優(yōu)化方法是一種理想化方法。這是因為盡管工業(yè)過程(對象)被設計得按一定的正常工況連續(xù)運行,但是環(huán)境的變動、觸媒和設備的老化以及原料成分的變動等因素形成了對工業(yè)過程的擾動,因此原來設計的工況條件就不是最優(yōu)的。解決此類問題的常見方法。

8、(1)局部參數(shù)最優(yōu)化和整體最優(yōu)化設計方法局部參數(shù)最優(yōu)化方法的基本思想是:按照參考模型和被控過程輸出之差來調(diào)整控制器可調(diào)參數(shù),使輸出誤差平方的積分達到最小。這樣可使被控過程和參考模型盡快地精確一致。此外,靜態(tài)最優(yōu)與動態(tài)最優(yōu)相結(jié)合,可變局部最優(yōu)為整體最優(yōu)。整體最優(yōu)由總體目標函數(shù)體現(xiàn)。整體最優(yōu)由兩部分組成:一種是靜態(tài)最優(yōu)(或離線最優(yōu)),它的目標函數(shù)在一段時間或一定范圍內(nèi)是不變的;另一種是動態(tài)最優(yōu)(或在線最優(yōu)),它是指整個工業(yè)過程的最優(yōu)化。工業(yè)過程是一個動態(tài)過程,要讓一個系統(tǒng)始終處于最優(yōu)化狀態(tài),必須隨時排除各種干擾,協(xié)調(diào)好各局部優(yōu)化參數(shù)或各現(xiàn)場控制器,從而達到整個系統(tǒng)最優(yōu)。(2)預測控制中的滾動優(yōu)化算

9、法預測控制,又稱基于模型的控制(Model-based Control),是70年代后期興起的一種新型優(yōu)化控制算法。但它與通常的離散最優(yōu)控制算法不同,不是采用一個不變的全局優(yōu)化目標,而是采用滾動式的有限時域優(yōu)化策略。這意味著優(yōu)化過程不是一次離線進行,而是反復在線進行的。這種有限化目標的局部性使其在理想情況下只能得到全局的次優(yōu)解,但其滾動實施,卻能顧及由于模型失配、時變、干擾等引起的不確定性,及時進行彌補,始終把新的優(yōu)化建立在實際的基礎之上,使控制保持實際上的最優(yōu)。這種啟發(fā)式的滾動優(yōu)化策略,兼顧了對未來充分長時間內(nèi)的理想優(yōu)化和實際存在的不確定性的影響。在復雜的工業(yè)環(huán)境中,這比建立在理想條件下的最

10、優(yōu)控制更加實際有效。預測控制的優(yōu)化模式具有鮮明的特點:它的離散形式的有限優(yōu)化目標及滾動推進的實施過程,使得在控制的全過程中實現(xiàn)動態(tài)優(yōu)化,而在控制的每一步實現(xiàn)靜態(tài)參數(shù)優(yōu)化。用這種思路,可以處理更復雜的情況,例如有約束、多目標、非線性乃至非參數(shù)等。吸取規(guī)劃中的分層思想,還可把目標按其重要性及類型分層,實施不同層次的優(yōu)化。顯然,可把大系統(tǒng)控制中分層決策的思想和人工智能方法引入預測控制,形成多層智能預測控制的模式。這種多層智能預測控制方法的,將克服單一模型的預測控制算法的不足,是當前研究的重要方向之一。(3)穩(wěn)態(tài)遞階控制對復雜的大工業(yè)過程(對象)的控制常采用集散控制模式。這時計算機在線穩(wěn)態(tài)優(yōu)化常采用遞

11、階控制結(jié)構(gòu)。這種結(jié)構(gòu)既有控制層又有優(yōu)化層,而優(yōu)化層是一個兩級結(jié)構(gòu),由局部決策單元級和協(xié)調(diào)器組成。其優(yōu)化進程是:各決策單元并行響應子過程優(yōu)化,由上一級決策單元(協(xié)調(diào)器)協(xié)調(diào)各優(yōu)化進程,各決策單元和協(xié)調(diào)器通過相互迭代找到最優(yōu)解。這里必須提到波蘭學者Findeisen等所作出的重要貢獻。由于工業(yè)過程較精確的數(shù)學模型不易求得,而且工業(yè)過程(對象)往往呈非線性及慢時變性,因此波蘭學者Findesien提出:優(yōu)化算法中采用模型求得的解是開環(huán)優(yōu)化解。在大工業(yè)過程在線穩(wěn)態(tài)控制的設計階段,開環(huán)解可以用來決定最優(yōu)工作點。但在實際使用上,這個解未必能使工業(yè)過程處于最優(yōu)工況,相反還會違反約束。他們提出的全新思想是:從

12、實際過程提取關聯(lián)變量的穩(wěn)態(tài)信息,并反饋至上一層協(xié)調(diào)器(全局反饋)或局部決策單元(局部反饋),并用它修正基于模型求出的的最優(yōu)解,使之接近真實最優(yōu)解。(4)系統(tǒng)優(yōu)化和參數(shù)估計的集成研究方法穩(wěn)態(tài)遞階控制的難點是,實際過程的輸入輸出特性是未知的。波蘭學者提出的反饋校正機制,得到的只能是一個次優(yōu)解。但其主要缺點在于一般很難準確估計次優(yōu)解偏離最優(yōu)解的程度,而且次優(yōu)解的次優(yōu)程度往往依賴于初始點的選取。一個自然的想法是將優(yōu)化和參數(shù)估計分開處理并交替進行,直到迭代收斂到一個解。這樣計算機的在線優(yōu)化控制就包括兩部分任務:在粗模型(粗模型通常是能夠得到的)基礎上的優(yōu)化和設定點下的修正模型。這種方法稱為系統(tǒng)優(yōu)化和參數(shù)

13、估計的集成研究方法。 (Integrated System Optimizationand Parameter Estimation)2.智能優(yōu)化方法對于越來越多的復雜控制對象,一方面,人們所要求的控制性能不再單純的局限于一兩個指標;另一方面,上述各種優(yōu)化方法,都是基于優(yōu)化問題具有精確的數(shù)學模型基礎之上的。但是許多實際工程問題是很難或不可能得到其精確的數(shù)學模型的。這就限制了上述經(jīng)典優(yōu)化方法的實際應用。隨著模糊理論、神經(jīng)網(wǎng)絡等智能技術和計算機技術的發(fā)展。近年來,智能式的優(yōu)化方法得到了重視和發(fā)展。(1)神經(jīng)網(wǎng)絡優(yōu)化方法人工神經(jīng)網(wǎng)絡的研究起源于1943年和Mc Culloch和Pitts的工作。在優(yōu)

14、化方面,1982年Hopfield首先引入Lyapuov能量函數(shù)用于判斷網(wǎng)絡的穩(wěn)定性,提出了Hopfield單層離散模型;Hopfield和Tank又發(fā)展了Hopfield單層連續(xù)模型。1986年,Hopfield和Tank將電子電路與Hopfield模型直接對應,實現(xiàn)了硬件模擬;Kennedy和Chua基于非線性電路理論提出了模擬電路模型,并使用系統(tǒng)微分方程的Lyapuov函數(shù)研究了電子電路的穩(wěn)定性。這些工作都有力地促進了對神經(jīng)網(wǎng)絡優(yōu)化方法的研究。根據(jù)神經(jīng)網(wǎng)絡理論,神經(jīng)網(wǎng)絡能量函數(shù)的極小點對應于系統(tǒng)的穩(wěn)定平衡點,這樣能量函數(shù)極小點的求解就轉(zhuǎn)換為求解系統(tǒng)的穩(wěn)定平衡點。隨著時間的演化,網(wǎng)絡的運動

15、軌道在空間中總是朝著能量函數(shù)減小的方向運動,最終到達系統(tǒng)的平衡點即能量函數(shù)的極小點。因此如果把神經(jīng)網(wǎng)絡動力系統(tǒng)的穩(wěn)定吸引子考慮為適當?shù)哪芰亢瘮?shù)(或增廣能量函數(shù))的極小點,優(yōu)化計算就從一初始點隨著系統(tǒng)流到達某一極小點。如果將全局優(yōu)化的概念用于控制系統(tǒng),則控制系統(tǒng)的目標函數(shù)最終將達到希望的最小點。這就是神經(jīng)優(yōu)化計算的基本原理。與一般的數(shù)學規(guī)劃一樣,神經(jīng)網(wǎng)絡方法也存在著重分析次數(shù)較多的弱點,如何與結(jié)構(gòu)的近似重分析等結(jié)構(gòu)優(yōu)化技術結(jié)合,減少迭代次數(shù)是今后進一步研究的方向之一。由于Hopfield模型能同時適用于離散問題和連續(xù)問題,因此可望有效地解決控制工程中普遍存在的混合離散變量非線性優(yōu)化問題。(2)遺

16、傳算法遺傳算法和遺傳規(guī)劃是一種新興的搜索尋優(yōu)技術。它仿效生物的進化和遺傳,根據(jù)“優(yōu)勝劣汰”原則,使所要求解決的問題從初始解逐步地逼近最優(yōu)解。在許多情況下,遺傳算法明顯優(yōu)于傳統(tǒng)的優(yōu)化方法。該算法允許所求解的問題是非線性的和不連續(xù)的,并能從整個可行解空間尋找全局最優(yōu)解和次優(yōu)解,避免只得到局部最優(yōu)解。這樣可以為我們提供更多有用的參考信息,以便更好地進行系統(tǒng)控制。同時其搜索最優(yōu)解的過程是有指導性的,避免了一般優(yōu)化算法的維數(shù)災難問題。遺傳算法的這些優(yōu)點隨著計算機技術的發(fā)展,在控制領域中將發(fā)揮越來越大的作用。目前的研究表明,遺傳算法是一種具有很大潛力的結(jié)構(gòu)優(yōu)化方法。它用于解決非線性結(jié)構(gòu)優(yōu)化、動力結(jié)構(gòu)優(yōu)化、

17、形狀優(yōu)化、拓撲優(yōu)化等復雜優(yōu)化問題,具有較大的優(yōu)勢。(3)模糊優(yōu)化方法最優(yōu)化問題一直是模糊理論應用最為廣泛的領域之一。模糊優(yōu)化方法與普通優(yōu)化方法的要求相同,仍然是尋求一個控制方案(即一組設計變量),滿足給定的約束條件,并使目標函數(shù)為最優(yōu)值,區(qū)別僅在于其中包含有模糊因素。普通優(yōu)化可以歸結(jié)為求解一個普通數(shù)學規(guī)劃問題,模糊規(guī)劃則可歸結(jié)為求解一個模糊數(shù)學規(guī)劃(fuzzymathematicalprogramming)問題。包含控制變量、目標函數(shù)和約束條件,但其中控制變量、目標函數(shù)和約束條件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊約束的優(yōu)化設計問題中模糊因素是包含在約束條件(如幾

18、何約束、性能約束和人文約束等)中的。求解模糊數(shù)學規(guī)劃問題的基本思想是把模糊優(yōu)化轉(zhuǎn)化為非模糊優(yōu)化即普通優(yōu)化問題。方法可分為兩類:一類是給出模糊解(fuzzysolution);另一類是給出一個特定的清晰解(crispsolution)。必須指出,上述解法都是對于模糊線性規(guī)劃(fuzzylinearprogramming)提出的。然而大多數(shù)實際工程問題是由非線形模糊規(guī)劃(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。在控制領域中,模糊控制與自學習算法、模糊控制與遺傳算法相融合,通過改進學習算法、遺傳算法,

19、按給定優(yōu)化性能指標,對被控對象進行逐步尋優(yōu)學習,從而能夠有效地確定模糊控制器的結(jié)構(gòu)和參數(shù)。最優(yōu)控制理論的案例分析案例一:最優(yōu)控制理論在電力系統(tǒng)勵磁控制中的應用近年來,隨著現(xiàn)代控制理論及其實際應用的不斷發(fā)展,運用現(xiàn)代控制理論進行電力系統(tǒng)運行性能的最優(yōu)化控制的研究工作有了迅速的發(fā)展,對如何按最優(yōu)化的方法設計多參量的勵磁調(diào)節(jié)器也取得了很大進展。1.基于非線性最優(yōu)和PID技術的綜合勵磁調(diào)節(jié)器對于非線性系統(tǒng)的同步發(fā)電機而言,當它偏離系統(tǒng)工作點或系統(tǒng)發(fā)生較大擾動時,如果仍然采用基于PID技術的電力系統(tǒng)穩(wěn)定器,就會出現(xiàn)誤差。為此,可以將其用基于非線性最優(yōu)控制技術的勵磁調(diào)節(jié)器。但是,非線性最優(yōu)控制調(diào)節(jié)器存在著

20、對電壓控制能力較弱的缺點,所以用一種能夠?qū)⒎蔷€性最優(yōu)勵磁調(diào)節(jié)器和PID技術的電力系統(tǒng)穩(wěn)定器有機結(jié)合的新型勵磁調(diào)節(jié)器的設計原理。此綜合勵磁調(diào)節(jié)器是利用非線性最優(yōu)控制理論的研究成果,其在非線性的勵磁控制中采用了精確線性化的數(shù)學方法,不存在平衡點線性化后的舍入誤差,因此該控制的數(shù)學模型在理論上對發(fā)電機的所有運行點都是精確的;同時針對非線性的勵磁控制調(diào)壓能力較弱的特點,又增加了PID環(huán)節(jié),使其具有較強的電壓調(diào)節(jié)特性此裝置在小機組試驗中取得非常好的實驗效果,在平衡點附近運行和偏離平衡點較多時都具有很好的調(diào)節(jié)特性。2.自適應最優(yōu)勵磁控制器將自適應控制理論與最優(yōu)控制理論相結(jié)合,通過多變量參數(shù)辨識、最優(yōu)反饋系

21、數(shù)計算和控制算法運算三個環(huán)節(jié),可以實現(xiàn)同步發(fā)電機勵磁的自適應最優(yōu)控制。此發(fā)電機自適應最優(yōu)勵磁方案,通過采用由帶可變遺忘因子的最小二乘算法構(gòu)成的多變量實時辨識器,使系統(tǒng)狀態(tài)方程的系數(shù)矩陣A和B中的元素值隨系統(tǒng)運行工況的變化而變化,再經(jīng)過最優(yōu)反饋系數(shù)計算,實現(xiàn)了同步電機的自適應最優(yōu)勵磁控制。雖然使用線性最優(yōu)控制理論求取反饋系數(shù),但由于狀態(tài)方程的系數(shù)矩陣中的元素值隨系統(tǒng)運行工況的變化而變化,因而控制作用體現(xiàn)了電力系統(tǒng)的非線性特性,本質(zhì)上是一種非線性控制。數(shù)字仿真試驗結(jié)果表明,該勵磁控制系統(tǒng)能夠自動跟蹤系統(tǒng)運行工作狀況,在線辨識不斷變化的系統(tǒng)參數(shù),使控制作用始終處于最優(yōu)狀態(tài)。從而改善了控制系統(tǒng)的動態(tài)品質(zhì),可以提高電力系統(tǒng)運行的穩(wěn)定性。3.基于神經(jīng)網(wǎng)絡逆系統(tǒng)方法的非線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論