核磁共振資料_第1頁(yè)
核磁共振資料_第2頁(yè)
核磁共振資料_第3頁(yè)
核磁共振資料_第4頁(yè)
核磁共振資料_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、核磁共振核磁共振(Nuclear Magnetic Resonance即NMR)核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又稱磁共振成像(Magnetic Resonance Imaging,MRI),核磁共振全名是核磁共振成像(MRI),是磁矩不為零的原子核,在外磁場(chǎng)作用下自旋能級(jí)發(fā)生塞曼分裂,共振吸收某一定頻率的射頻輻射的物理過(guò)程。核磁共振波譜學(xué)是光譜學(xué)的一個(gè)分支,其共振頻率在射頻波段,相應(yīng)的躍遷是核自旋在核塞曼能級(jí)上的躍遷。 核磁共振是處于靜磁場(chǎng)中的原子核在另一交變磁場(chǎng)作用下發(fā)生的物理現(xiàn)象。通常人們所說(shuō)的核磁共振指的是利用核磁共振現(xiàn)象

2、獲取分子結(jié)構(gòu)、人體內(nèi)部結(jié)構(gòu)信息的技術(shù)。 并不是是所有原子核都能產(chǎn)生這種現(xiàn)象,原子核能產(chǎn)生核磁共振現(xiàn)象是因?yàn)榫哂泻俗孕?。原子核自旋產(chǎn)生磁矩,當(dāng)核磁矩處于靜止外磁場(chǎng)中時(shí)產(chǎn)生進(jìn)動(dòng)核和能級(jí)分裂。在交變磁場(chǎng)作用下,自旋核會(huì)吸收特定頻率的電磁波,從較低的能級(jí)躍遷到較高能級(jí)。這種過(guò)程就是核磁共振。 核磁共振(MRI)又叫核磁共振成像技術(shù)。是后繼CT后醫(yī)學(xué)影像學(xué)的又一重大進(jìn)步。自80年代應(yīng)用以來(lái),它以極快的速度得到發(fā)展。其基本原理:是將人體置于特殊的磁場(chǎng)中,用無(wú)線電射頻脈沖激發(fā)人體內(nèi)氫原子核,引起氫原子核共振,并吸收能量。在停止射頻脈沖后,氫原子核按特定頻率發(fā)出射電信號(hào),并將吸收的能量釋放出來(lái),被體外的接受器

3、收錄,經(jīng)電子計(jì)算機(jī)處理獲得圖像,這就叫做核磁共振成像。 核磁共振是一種物理現(xiàn)象,作為一種分析手段廣泛應(yīng)用于物理、化學(xué)生物等領(lǐng)域,到1973年才將它用于醫(yī)學(xué)臨床檢測(cè)。為了避免與核醫(yī)學(xué)中放射成像混淆,把它稱為核磁共振成像術(shù)(MRI)。 MRI是一種生物磁自旋成像技術(shù),它是利用原子核自旋運(yùn)動(dòng)的特點(diǎn),在外加磁場(chǎng)內(nèi),經(jīng)射頻脈沖激后產(chǎn)生信號(hào),用探測(cè)器檢測(cè)并輸入計(jì)算機(jī),經(jīng)過(guò)處理轉(zhuǎn)換在屏幕上顯示圖像。 MRI提供的信息量不但大于醫(yī)學(xué)影像學(xué)中的其他許多成像術(shù),而且不同于已有的成像術(shù),因此,它對(duì)疾病的診斷具有很大的潛在優(yōu)越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會(huì)產(chǎn)生CT檢測(cè)中的偽影;不需

4、注射造影劑;無(wú)電離輻射,對(duì)機(jī)體沒(méi)有不良影響。MRI對(duì)檢測(cè)腦內(nèi)血腫、腦外血腫、腦腫瘤、顱內(nèi)動(dòng)脈瘤、動(dòng)靜脈血管畸形、腦缺血、椎管內(nèi)腫瘤、脊髓空洞癥和脊髓積水等顱腦常見疾病非常有效,同時(shí)對(duì)腰椎椎間盤后突、原發(fā)性肝癌等疾病的診斷也很有效。 MRI也存在不足之處。它的空間分辨率不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價(jià)格比較昂貴。核磁共振技術(shù)的歷史1930年代,物理學(xué)家伊西多·拉比發(fā)現(xiàn)在磁場(chǎng)中的原子核會(huì)沿磁場(chǎng)方向呈正向或反向有序平行排列,而施加無(wú)線電波之后,原子核的自旋方向發(fā)生翻轉(zhuǎn)。這是人類關(guān)于原子核與磁場(chǎng)以及外加射頻場(chǎng)相互作用的最早認(rèn)識(shí)。由于這項(xiàng)研究,拉比

5、于1944年獲得了諾貝爾物理學(xué)獎(jiǎng)。 1946年兩位美國(guó)科學(xué)家布洛赫和珀塞爾發(fā)現(xiàn),將具有奇數(shù)個(gè)核子(包括質(zhì)子和中子)的原子核置于磁場(chǎng)中,再施加以特定頻率的射頻場(chǎng),就會(huì)發(fā)生原子核吸收射頻場(chǎng)能量的現(xiàn)象,這就是人們最初對(duì)核磁共振現(xiàn)象的認(rèn)識(shí)。為此他們兩人獲得了1952年度諾貝爾物理學(xué)獎(jiǎng)。 人們?cè)诎l(fā)現(xiàn)核磁共振現(xiàn)象之后很快就產(chǎn)生了實(shí)際用途,化學(xué)家利用分子結(jié)構(gòu)對(duì)氫原子周圍磁場(chǎng)產(chǎn)生的影響,發(fā)展出了核磁共振譜,用于解析分子結(jié)構(gòu),隨著時(shí)間的推移,核磁共振譜技術(shù)不斷發(fā)展,從最初的一維氫譜發(fā)展到13C譜、二維核磁共振譜等高級(jí)譜圖,核磁共振技術(shù)解析分子結(jié)構(gòu)的能力也越來(lái)越強(qiáng),進(jìn)入1990年代以后,人們甚至發(fā)展出了依靠核磁共

6、振信息確定蛋白質(zhì)分子三級(jí)結(jié)構(gòu)的技術(shù),使得溶液相蛋白質(zhì)分子結(jié)構(gòu)的精確測(cè)定成為可能。 1946年,美國(guó)哈佛大學(xué)的珀塞爾和斯坦福大學(xué)的布洛赫宣布,他們發(fā)現(xiàn)了核磁共振NMR。兩人因此獲得了1952年諾貝爾獎(jiǎng)。核磁共振是原子核的磁矩在恒定磁場(chǎng)和高頻磁場(chǎng)(處在無(wú)線電波波段)同時(shí)作用下,當(dāng)滿足一定條件時(shí),會(huì)產(chǎn)生共振吸收現(xiàn)象。核磁共振很快成為一種探索、研究物質(zhì)微觀結(jié)構(gòu)和性質(zhì)的高新技術(shù)。目前,核磁共振已在物理、化學(xué)、材料科學(xué)、生命科學(xué)和醫(yī)學(xué)等領(lǐng)域中得到了廣泛應(yīng)用。 原子核由質(zhì)子和中子組成,它們均存在固有磁矩??赏ㄋ椎睦斫鉃樗鼈?cè)诖艌?chǎng)中的行為就像一根根小磁針。原子核在外加磁場(chǎng)作用下,核磁矩與磁場(chǎng)相互作用導(dǎo)致能級(jí)分

7、裂,能級(jí)差與外加磁場(chǎng)強(qiáng)度成正比。如果再同時(shí)加一個(gè)與能級(jí)間隔相應(yīng)的交變電磁場(chǎng),就可以引起原子核的能級(jí)躍遷,產(chǎn)生核磁共振??梢?,它的基本原理與原子的共振吸收現(xiàn)象類似。 早期核磁共振主要用于對(duì)核結(jié)構(gòu)和性質(zhì)的研究,如測(cè)量核磁矩、電四極距、及核自旋等,后來(lái)廣泛應(yīng)用于分子組成和結(jié)構(gòu)分析,生物組織與活體組織分析,病理分析、醫(yī)療診斷、產(chǎn)品無(wú)損監(jiān)測(cè)等方面。對(duì)于孤立的氫原子核(也就是質(zhì)子),當(dāng)磁場(chǎng)為1.4T時(shí),共振頻率為59.6MHz,相應(yīng)的電磁波為波長(zhǎng)5米的無(wú)線電波。但在化合物分子中,這個(gè)共振頻率還與氫核所處的化學(xué)環(huán)境有關(guān),處在不同化學(xué)環(huán)境中的氫核有不同的共振頻率,稱為化學(xué)位移。這是由核外電子云對(duì)磁場(chǎng)的屏蔽作用

8、、誘導(dǎo)效應(yīng)、共厄效應(yīng)等原因引起的。同時(shí)由于分子間各原子的相互作用,還會(huì)產(chǎn)生自旋-耦合裂分。利用化學(xué)位移與裂分?jǐn)?shù)目,就可以推測(cè)化合物尤其是有機(jī)物的分子結(jié)構(gòu)。這就是核磁共振的波譜分析。20世紀(jì)70年代,脈沖傅里葉變換核磁共振儀出現(xiàn)了,它使C13譜的應(yīng)用也日益增多。用核磁共振法進(jìn)行材料成分和結(jié)構(gòu)分析有精度高、對(duì)樣品限制少、不破壞樣品等優(yōu)點(diǎn)。 最早的核磁共振成像實(shí)驗(yàn)是由1973年勞特伯發(fā)表的,并立刻引起了廣泛重視,短短10年間就進(jìn)入了臨床應(yīng)用階段。作用在樣品上有一穩(wěn)定磁場(chǎng)和一個(gè)交變電磁場(chǎng),去掉電磁場(chǎng)后,處在激發(fā)態(tài)的核可以躍遷到低能級(jí),輻射出電磁波,同時(shí)可以在線圈中感應(yīng)出電壓信號(hào),稱為核磁共振信號(hào)。人體

9、組織中由于存在大量水和碳?xì)浠衔锒写罅康臍浜?,一般用氫核得到的信?hào)比其他核大1000倍以上。正常組織與病變組織的電壓信號(hào)不同,結(jié)合CT技術(shù),即電子計(jì)算機(jī)斷層掃描技術(shù),可以得到人體組織的任意斷面圖像,尤其對(duì)軟組織的病變?cè)\斷,更顯示了它的優(yōu)點(diǎn),而且對(duì)病變部位非常敏感,圖像也很清晰。 核磁共振成像研究中,一個(gè)前沿課題是對(duì)人腦的功能和高級(jí)思維活動(dòng)進(jìn)行研究的功能性核磁共振成像。人們對(duì)大腦組織已經(jīng)很了解,但對(duì)大腦如何工作以及為何有如此高級(jí)的功能卻知之甚少。美國(guó)貝爾實(shí)驗(yàn)室于1988年開始了這方面的研究,美國(guó)政府還將20世紀(jì)90年代確定為“腦的十年”。用核磁共振技術(shù)可以直接對(duì)生物活體進(jìn)行觀測(cè),而且被測(cè)對(duì)象

10、意識(shí)清醒,還具有無(wú)輻射損傷、成像速度快、時(shí)空分辨率高(可分別達(dá)到100m和幾十ms)、可檢測(cè)多種核素、化學(xué)位移有選擇性等優(yōu)點(diǎn)。美國(guó)威斯康星醫(yī)院已拍攝了數(shù)千張人腦工作時(shí)的實(shí)況圖像,有望在不久的將來(lái)揭開人腦工作的奧秘。 若將核磁共振的頻率變數(shù)增加到兩個(gè)或多個(gè),可以實(shí)現(xiàn)二維或多維核磁共振,從而獲得比一維核磁共振更多的信息。目前核磁共振成像應(yīng)用僅限于氫核,但從實(shí)際應(yīng)用的需要,還要求可以對(duì)其他一些核如:C13、N14、P31、S33、Na23、I127等進(jìn)行核磁共振成像。C13已經(jīng)進(jìn)入實(shí)用階段,但仍需要進(jìn)一步擴(kuò)大和深入。核磁共振與其他物理效應(yīng)如穆斯堡爾效應(yīng)(射線的無(wú)反沖共振吸收效應(yīng))、電子自旋共振等的結(jié)

11、合可以獲得更多有價(jià)值的信息,無(wú)論在理論上還是在實(shí)際應(yīng)用中都有重要意義。核磁共振擁有廣泛的應(yīng)用前景,伴隨著脈沖傅里葉技術(shù)已經(jīng)取得了一次突破,使C13譜進(jìn)入應(yīng)用階段,有理由相信,其它核的譜圖進(jìn)入應(yīng)用階段應(yīng)為期不遠(yuǎn)。 另一方面,醫(yī)學(xué)家們發(fā)現(xiàn)水分子中的氫原子可以產(chǎn)生核磁共振現(xiàn)象,利用這一現(xiàn)象可以獲取人體內(nèi)水分子分布的信息,從而精確繪制人體內(nèi)部結(jié)構(gòu),在這一理論基礎(chǔ)上1969年,紐約州立大學(xué)南部醫(yī)學(xué)中心的醫(yī)學(xué)博士達(dá)馬迪安通過(guò)測(cè)核磁共振的弛豫時(shí)間成功的將小鼠的癌細(xì)胞與正常組織細(xì)胞區(qū)分開來(lái),在達(dá)馬迪安新技術(shù)的啟發(fā)下紐約州立大學(xué)石溪分校的物理學(xué)家保羅·勞特伯爾于1973年開發(fā)出了基于核磁共振現(xiàn)象的成像

12、技術(shù)(MRI),并且應(yīng)用他的設(shè)備成功地繪制出了一個(gè)活體蛤蜊地內(nèi)部結(jié)構(gòu)圖像。勞特伯爾之后,MRI技術(shù)日趨成熟,應(yīng)用范圍日益廣泛,成為一項(xiàng)常規(guī)的醫(yī)學(xué)檢測(cè)手段,廣泛應(yīng)用于帕金森氏癥、多發(fā)性硬化癥等腦部與脊椎病變以及癌癥的治療和診斷。2003年,保羅·勞特伯爾和英國(guó)諾丁漢大學(xué)教授彼得·曼斯菲爾因?yàn)樗麄冊(cè)诤舜殴舱癯上窦夹g(shù)方面的貢獻(xiàn)獲得了當(dāng)年度的諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)。 其基本原理:是將人體置于特殊的磁場(chǎng)中,用無(wú)線電射頻脈沖激發(fā)人體內(nèi)氫原子核,引起氫原子核共振,并吸收能量。在停止射頻脈沖后,氫原子核按特定頻率發(fā)出射電信號(hào),并將吸收的能量釋放出來(lái),被體外的接受器收錄,經(jīng)電子計(jì)算機(jī)處理獲得圖

13、像,這就叫做核磁共振成像。核磁共振的應(yīng)用NMR技術(shù)核磁共振頻譜學(xué) NMR技術(shù)即核磁共振譜技術(shù),是將核磁共振現(xiàn)象應(yīng)用于分子結(jié)構(gòu)測(cè)定的一項(xiàng)技術(shù)。對(duì)于有機(jī)分子結(jié)構(gòu)測(cè)定來(lái)說(shuō),核磁共振譜扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質(zhì)譜一起被有機(jī)化學(xué)家們稱為“四大名譜”。目前對(duì)核磁共振譜的研究主要集中在1H和13C兩類原子核的圖譜。 對(duì)于孤立原子核而言,同一種原子核在同樣強(qiáng)度的外磁場(chǎng)中,只對(duì)某一特定頻率的射頻場(chǎng)敏感。但是處于分子結(jié)構(gòu)中的原子核,由于分子中電子云分布等因素的影響,實(shí)際感受到的外磁場(chǎng)強(qiáng)度往往會(huì)發(fā)生一定程度的變化,而且處于分子結(jié)構(gòu)中不同位置的原子核,所感受到的外加磁場(chǎng)的強(qiáng)度也各不相同,

14、這種分子中電子云對(duì)外加磁場(chǎng)強(qiáng)度的影響,會(huì)導(dǎo)致分子中不同位置原子核對(duì)不同頻率的射頻場(chǎng)敏感,從而導(dǎo)致核磁共振信號(hào)的差異,這種差異便是通過(guò)核磁共振解析分子結(jié)構(gòu)的基礎(chǔ)。原子核附近化學(xué)鍵和電子云的分布狀況稱為該原子核的化學(xué)環(huán)境,由于化學(xué)環(huán)境影響導(dǎo)致的核磁共振信號(hào)頻率位置的變化稱為該原子核的化學(xué)位移。 耦合常數(shù)是化學(xué)位移之外核磁共振譜提供的的另一個(gè)重要信息,所謂耦合指的是臨近原子核自旋角動(dòng)量的相互影響,這種原子核自旋角動(dòng)量的相互作用會(huì)改變?cè)雍俗孕谕獯艌?chǎng)中進(jìn)動(dòng)的能級(jí)分布狀況,造成能級(jí)的裂分,進(jìn)而造成NMR譜圖中的信號(hào)峰形狀發(fā)生變化,通過(guò)解析這些峰形的變化,可以推測(cè)出分子結(jié)構(gòu)中各原子之間的連接關(guān)系。 最后

15、,信號(hào)強(qiáng)度是核磁共振譜的第三個(gè)重要信息,處于相同化學(xué)環(huán)境的原子核在核磁共振譜中會(huì)顯示為同一個(gè)信號(hào)峰,通過(guò)解析信號(hào)峰的強(qiáng)度可以獲知這些原子核的數(shù)量,從而為分子結(jié)構(gòu)的解析提供重要信息。表征信號(hào)峰強(qiáng)度的是信號(hào)峰的曲線下面積積分,這一信息對(duì)于1H-NMR譜尤為重要,而對(duì)于13C-NMR譜而言,由于峰強(qiáng)度和原子核數(shù)量的對(duì)應(yīng)關(guān)系并不顯著,因而峰強(qiáng)度并不非常重要。 早期的核磁共振譜主要集中于氫譜,這是由于能夠產(chǎn)生核磁共振信號(hào)的1H原子在自然界豐度極高,由其產(chǎn)生的核磁共振信號(hào)很強(qiáng),容易檢測(cè)。隨著傅立葉變換技術(shù)的發(fā)展,核磁共振儀可以在很短的時(shí)間內(nèi)同時(shí)發(fā)出不同頻率的射頻場(chǎng),這樣就可以對(duì)樣品重復(fù)掃描,從而將微弱的核

16、磁共振信號(hào)從背景噪音中區(qū)分出來(lái),這使得人們可以收集13C核磁共振信號(hào)。 近年來(lái),人們發(fā)展了二維核磁共振譜技術(shù),這使得人們能夠獲得更多關(guān)于分子結(jié)構(gòu)的信息,目前二維核磁共振譜已經(jīng)可以解析分子量較小的蛋白質(zhì)分子的空間結(jié)構(gòu)。 MRI技術(shù)核磁共振成像 核磁共振成像技術(shù)是核磁共振在醫(yī)學(xué)領(lǐng)域的應(yīng)用。人體內(nèi)含有非常豐富的水,不同的組織,水的含量也各不相同,如果能夠探測(cè)到這些水的分布信息,就能夠繪制出一幅比較完整的人體內(nèi)部結(jié)構(gòu)圖像,核磁共振成像技術(shù)就是通過(guò)識(shí)別水分子中氫原子信號(hào)的分布來(lái)推測(cè)水分子在人體內(nèi)的分布,進(jìn)而探測(cè)人體內(nèi)部結(jié)構(gòu)的技術(shù)。 與用于鑒定分子結(jié)構(gòu)的核磁共振譜技術(shù)不同,核磁共振成像技術(shù)改編的是外加磁場(chǎng)

17、的強(qiáng)度,而非射頻場(chǎng)的頻率。核磁共振成像儀在垂直于主磁場(chǎng)方向會(huì)提供兩個(gè)相互垂直的梯度磁場(chǎng),這樣在人體內(nèi)磁場(chǎng)的分布就會(huì)隨著空間位置的變化而變化,每一個(gè)位置都會(huì)有一個(gè)強(qiáng)度不同、方向不同的磁場(chǎng),這樣,位于人體不同部位的氫原子就會(huì)對(duì)不同的射頻場(chǎng)信號(hào)產(chǎn)生反應(yīng),通過(guò)記錄這一反應(yīng),并加以計(jì)算處理,可以獲得水分子在空間中分布的信息,從而獲得人體內(nèi)部結(jié)構(gòu)的圖像。 核磁共振成像技術(shù)還可以與X射線斷層成像技術(shù)(CT)結(jié)合為臨床診斷和生理學(xué)、醫(yī)學(xué)研究提供重要數(shù)據(jù)。 核磁共振成像技術(shù)是一種非介入探測(cè)技術(shù),相對(duì)于X-射線透視技術(shù)和放射造影技術(shù),MRI對(duì)人體沒(méi)有輻射影響,相對(duì)于超聲探測(cè)技術(shù),核磁共振成像更加清晰,能夠顯示更多

18、細(xì)節(jié),此外相對(duì)于其他成像技術(shù),核磁共振成像不僅僅能夠顯示有形的實(shí)體病變,而且還能夠?qū)δX、心、肝等功能性反應(yīng)進(jìn)行精確的判定。在帕金森氏癥、阿爾茨海默氏癥、癌癥等疾病的診斷方面,MRI技術(shù)都發(fā)揮了非常重要的作用。 MRS技術(shù)核磁共振測(cè)深 核磁共振探測(cè)是MRI技術(shù)在地質(zhì)勘探領(lǐng)域的延伸,通過(guò)對(duì)地層中水分布信息的探測(cè),可以確定某一地層下是否有地下水存在,地下水位的高度、含水層的含水量和孔隙率等地層結(jié)構(gòu)信息。 目前核磁共振探測(cè)技術(shù)已經(jīng)成為傳統(tǒng)的鉆探探測(cè)技術(shù)的補(bǔ)充手段,并且應(yīng)用于滑坡等地質(zhì)災(zāi)害的預(yù)防工作中,但是相對(duì)于傳統(tǒng)的鉆探探測(cè),核磁共振探測(cè)設(shè)備購(gòu)買、運(yùn)行和維護(hù)費(fèi)用非常高昂,這嚴(yán)重地限制了MRS技術(shù)在地質(zhì)

19、科學(xué)中的應(yīng)用。 核磁共振的特點(diǎn)共振頻率決定于核外電子結(jié)構(gòu)和核近鄰組態(tài);共振峰的強(qiáng)弱決定于該組態(tài)在合金中所占的比例;譜線的分辨率極高。磁共振成像的優(yōu)點(diǎn) 與1901年獲得諾貝爾物理學(xué)獎(jiǎng)的普通X射線或1979年獲得諾貝爾醫(yī)學(xué)獎(jiǎng)的計(jì)算機(jī)層析成像(computerized tomography, CT)相比,磁共振成像的最大優(yōu)點(diǎn)是它是目前少有的對(duì)人體沒(méi)有任何傷害的安全、快速、準(zhǔn)確的臨床診斷方法。如今全球每年至少有6000萬(wàn)病例利用核磁共振成像技術(shù)進(jìn)行檢查。具體說(shuō)來(lái)有以下幾點(diǎn): 對(duì)人體沒(méi)有游離輻射損傷; 各種參數(shù)都可以用來(lái)成像,多個(gè)成像參數(shù)能提供豐富的診斷信息,這使得醫(yī)療診斷和對(duì)人體內(nèi)代謝和功能的研究方便

20、、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權(quán)圖像,可區(qū)別肝部良性腫瘤與惡性腫瘤; 通過(guò)調(diào)節(jié)磁場(chǎng)可自由選擇所需剖面。能得到其它成像技術(shù)所不能接近或難以接近部位的圖像。對(duì)于椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經(jīng)根、脊髓和神經(jīng)節(jié)等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長(zhǎng)軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位; 能診斷心臟病變,CT因掃描速度慢而難以勝任; 對(duì)軟組織有極好的分辨力。對(duì)膀胱、直腸、子宮、陰道、骨、關(guān)節(jié)、肌肉等部位的檢查優(yōu)于CT; 原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和

21、15N)、磷(31P)等。 臨床意義:適應(yīng)癥:神經(jīng)系統(tǒng)的病變包括腫瘤、梗塞、出血、變性、先天畸形、感染等幾乎成為確診的手段。特別是脊髓脊椎的病變?nèi)缂棺档哪[瘤、萎縮、變性、外傷椎間盤病變,成為首選的檢查方法。 心臟大血管的病變;肺內(nèi)縱膈的病變。 腹部盆腔臟器的檢查;膽道系統(tǒng)、泌尿系統(tǒng)等明顯優(yōu)于CT。 對(duì)關(guān)節(jié)軟組織病變;對(duì)骨髓、骨的無(wú)菌性壞死十分敏感,病變的發(fā)現(xiàn)早于X線和CT。 編輯本段核磁共振和CT的區(qū)別計(jì)算機(jī)斷層掃描(CT)能在一個(gè)橫斷解剖平面上,準(zhǔn)確地探測(cè)各種不同組織間密度的微小差別,是觀察骨關(guān)節(jié)及軟組織病變的一種較理想的檢查方式。在關(guān)節(jié)炎的診斷上,主要用于檢查脊柱,特別是骶髂關(guān)節(jié)。CT優(yōu)于

22、傳統(tǒng)X線檢查之處在于其分辨率高,而且還能做軸位成像。由于CT的密度分辨率高,所以軟組織、骨與關(guān)節(jié)都能顯得很清楚。加上CT可以做軸位掃描,一些傳統(tǒng)X線影像上分辨較困難的關(guān)節(jié)都能在叮圖像上“原形畢露”。如由于骶髂關(guān)節(jié)的關(guān)節(jié)面生來(lái)就傾斜和彎曲,同時(shí)還有其他組織之重疊,盡管大多數(shù)病例的骶髂關(guān)節(jié)用x線片已可能達(dá)到要求,但有時(shí)X線檢查發(fā)現(xiàn)骶髂關(guān)節(jié)炎比較困難,則對(duì)有問(wèn)題的病人就可做CT檢查。磁共振成像(MRI)是根據(jù)在強(qiáng)磁場(chǎng)中放射波和氫核的相互作用而獲得的。磁共振一問(wèn)世,很快就成為在對(duì)許多疾病診斷方面有用的成像工具,包括骨骼肌肉系統(tǒng)。肌肉骨骼系統(tǒng)最適于做磁共振成像,因?yàn)樗慕M織密度對(duì)比范圍大。在骨、關(guān)節(jié)與軟

23、組織病變的診斷方面,磁共振成像由于具有多于CT數(shù)倍的成像參數(shù)和高度的軟組織分辨率,使其對(duì)軟組織的對(duì)比度明顯高于CT。磁共振成像通過(guò)它多向平面成像的功能,應(yīng)用高分辨的毒面線圈可明顯提高各關(guān)節(jié)部位的成像質(zhì)量,使神經(jīng)、肌腱、韌帶、血管、軟骨等其他影像檢查所不能分辨的細(xì)微結(jié)果得以顯示。磁共振成像在骨關(guān)節(jié)系統(tǒng)的不足之處是,對(duì)于骨與軟組織病變定性診斷無(wú)特異性,成像速度慢,在檢查過(guò)程中。病人自主或不自主的活動(dòng)可引起運(yùn)動(dòng)偽影,影響診斷。X線攝片、CT、磁共振成像可稱為三駕馬車,三者有機(jī)地結(jié)合,使當(dāng)前影像學(xué)檢查既擴(kuò)大了檢查范圍,又提高了診斷水平。核磁共振技術(shù)的歷史 1930年代,物理學(xué)家伊西多·拉比發(fā)

24、現(xiàn)在磁場(chǎng)中的原子核會(huì)沿磁場(chǎng)方向呈正向或反向有序平行排列,而施加無(wú)線電波之后,原子核的自旋方向發(fā)生翻轉(zhuǎn)。這是人類關(guān)于原子核與磁場(chǎng)以及外加射頻場(chǎng)相互作用的最早認(rèn)識(shí)。由于這項(xiàng)研究,拉比于1944年獲得了諾貝爾物理學(xué)獎(jiǎng)。 1946年兩位美國(guó)科學(xué)家布洛赫和珀塞爾發(fā)現(xiàn),將具有奇數(shù)個(gè)核子(包括質(zhì)子和中子)的原子核置于磁場(chǎng)中,再施加以特定頻率的射頻場(chǎng),就會(huì)發(fā)生原子核吸收射頻場(chǎng)能量的現(xiàn)象,這就是人們最初對(duì)核磁共振現(xiàn)象的認(rèn)識(shí)。為此他們兩人獲得了1950年度諾貝爾物理學(xué)獎(jiǎng)。 人們?cè)诎l(fā)現(xiàn)核磁共振現(xiàn)象之后很快就產(chǎn)生了實(shí)際用途,化學(xué)家利用分子結(jié)構(gòu)對(duì)氫原子周圍磁場(chǎng)產(chǎn)生的影響,發(fā)展出了核磁共振譜,用于解析分子結(jié)構(gòu),隨著時(shí)間的

25、推移,核磁共振譜技術(shù)不斷發(fā)展,從最初的一維氫譜發(fā)展到13C譜、二維核磁共振譜等高級(jí)譜圖,核磁共振技術(shù)解析分子結(jié)構(gòu)的能力也越來(lái)越強(qiáng),進(jìn)入1990年代以后,人們甚至發(fā)展出了依靠核磁共振信息確定蛋白質(zhì)分子三級(jí)結(jié)構(gòu)的技術(shù),使得溶液相蛋白質(zhì)分子結(jié)構(gòu)的精確測(cè)定成為可能。 另一方面,醫(yī)學(xué)家們發(fā)現(xiàn)水分子中的氫原子可以產(chǎn)生核磁共振現(xiàn)象,利用這一現(xiàn)象可以獲取人體內(nèi)水分子分布的信息,從而精確繪制人體內(nèi)部結(jié)構(gòu),在這一理論基礎(chǔ)上1969年,紐約州立大學(xué)南部醫(yī)學(xué)中心的醫(yī)學(xué)博士達(dá)馬迪安通過(guò)測(cè)核磁共振的弛豫時(shí)間成功的將小鼠的癌細(xì)胞與正常組織細(xì)胞區(qū)分開來(lái),在達(dá)馬迪安新技術(shù)的啟發(fā)下紐約州立大學(xué)石溪分校的物理學(xué)家保羅·勞

26、特伯爾于1973年開發(fā)出了基于核磁共振現(xiàn)象的成像技術(shù)(MRI),并且應(yīng)用他的設(shè)備成功地繪制出了一個(gè)活體蛤蜊地內(nèi)部結(jié)構(gòu)圖像。勞特伯爾之后,MRI技術(shù)日趨成熟,應(yīng)用范圍日益廣泛,成為一項(xiàng)常規(guī)的醫(yī)學(xué)檢測(cè)手段,廣泛應(yīng)用于帕金森氏癥、多發(fā)性硬化癥等腦部與脊椎病變以及癌癥的治療和診斷。2003年,保羅·勞特伯爾和英國(guó)諾丁漢大學(xué)教授彼得·曼斯菲爾因?yàn)樗麄冊(cè)诤舜殴舱癯上窦夹g(shù)方面的貢獻(xiàn)獲得了當(dāng)年度的諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)。 核磁共振的原理 核磁共振現(xiàn)象來(lái)源于原子核的自旋角動(dòng)量在外加磁場(chǎng)作用下的進(jìn)動(dòng)。 根據(jù)量子力學(xué)原理,原子核與電子一樣,也具有自旋角動(dòng)量,其自旋角動(dòng)量的具體數(shù)值由原子核的自旋量子

27、數(shù)決定,實(shí)驗(yàn)結(jié)果顯示,不同類型的原子核自旋量子數(shù)也不同: 質(zhì)量數(shù)和質(zhì)子數(shù)均為偶數(shù)的原子核,自旋量子數(shù)為0 質(zhì)量數(shù)為奇數(shù)的原子核,自旋量子數(shù)為半整數(shù) 質(zhì)量數(shù)為偶數(shù),質(zhì)子數(shù)為奇數(shù)的原子核,自旋量子數(shù)為整數(shù) 迄今為止,只有自旋量子數(shù)等于1/2的原子核,其核磁共振信號(hào)才能夠被人們利用,經(jīng)常為人們所利用的原子核有: 1H、11B、13C、17O、19F、31P 由于原子核攜帶電荷,當(dāng)原子核自旋時(shí),會(huì)由自旋產(chǎn)生一個(gè)磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動(dòng)量成正比。將原子核置于外加磁場(chǎng)中,若原子核磁矩與外加磁場(chǎng)方向不同,則原子核磁矩會(huì)繞外磁場(chǎng)方向旋轉(zhuǎn),這一現(xiàn)象類似陀螺在旋轉(zhuǎn)過(guò)程中轉(zhuǎn)

28、動(dòng)軸的擺動(dòng),稱為進(jìn)動(dòng)。進(jìn)動(dòng)具有能量也具有一定的頻率。 原子核進(jìn)動(dòng)的頻率由外加磁場(chǎng)的強(qiáng)度和原子核本身的性質(zhì)決定,也就是說(shuō),對(duì)于某一特定原子,在一定強(qiáng)度的的外加磁場(chǎng)中,其原子核自旋進(jìn)動(dòng)的頻率是固定不變的。 原子核發(fā)生進(jìn)動(dòng)的能量與磁場(chǎng)、原子核磁矩、以及磁矩與磁場(chǎng)的夾角相關(guān),根據(jù)量子力學(xué)原理,原子核磁矩與外加磁場(chǎng)之間的夾角并不是連續(xù)分布的,而是由原子核的磁量子數(shù)決定的,原子核磁矩的方向只能在這些磁量子數(shù)之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級(jí)。當(dāng)原子核在外加磁場(chǎng)中接受其他來(lái)源的能量輸入后,就會(huì)發(fā)生能級(jí)躍遷,也就是原子核磁矩與外加磁場(chǎng)的夾角會(huì)發(fā)生變化。這種能級(jí)躍遷是獲取核磁共振信號(hào)的基礎(chǔ)。

29、為了讓原子核自旋的進(jìn)動(dòng)發(fā)生能級(jí)躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過(guò)外加射頻場(chǎng)來(lái)提供的。根據(jù)物理學(xué)原理當(dāng)外加射頻場(chǎng)的頻率與原子核自旋進(jìn)動(dòng)的頻率相同的時(shí)候,射頻場(chǎng)的能量才能夠有效地被原子核吸收,為能級(jí)躍遷提供助力。因此某種特定的原子核,在給定的外加磁場(chǎng)中,只吸收某一特定頻率射頻場(chǎng)提供的能量,這樣就形成了一個(gè)核磁共振信號(hào)。 核磁共振的應(yīng)用 NMR技術(shù) 異丙苯的1H-NMR譜圖 參見核磁共振譜 NMR技術(shù)即核磁共振譜技術(shù),是將核磁共振現(xiàn)象應(yīng)用于分子結(jié)構(gòu)測(cè)定的一項(xiàng)技術(shù)。對(duì)于有機(jī)分子結(jié)構(gòu)測(cè)定來(lái)說(shuō),核磁共振譜扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質(zhì)譜一起被有機(jī)化學(xué)家們稱

30、為“四大名譜”。目前對(duì)核磁共振譜的研究主要集中在1H和13C兩類原子核的圖譜。 對(duì)于孤立原子核而言,同一種原子核在同樣強(qiáng)度的外磁場(chǎng)中,只對(duì)某一特定頻率的射頻場(chǎng)敏感。但是處于分子結(jié)構(gòu)中的原子核,由于分子中電子云分布等因素的影響,實(shí)際感受到的外磁場(chǎng)強(qiáng)度往往會(huì)發(fā)生一定程度的變化,而且處于分子結(jié)構(gòu)中不同位置的原子核,所感受到的外加磁場(chǎng)的強(qiáng)度也各不相同,這種分子中電子云對(duì)外加磁場(chǎng)強(qiáng)度的影響,會(huì)導(dǎo)致分子中不同位置原子核對(duì)不同頻率的射頻場(chǎng)敏感,從而導(dǎo)致核磁共振信號(hào)的差異,這種差異便是通過(guò)核磁共振解析分子結(jié)構(gòu)的基礎(chǔ)。原子核附近化學(xué)鍵和電子云的分布狀況稱為該原子核的化學(xué)環(huán)境,由于化學(xué)環(huán)境影響導(dǎo)致的核磁共振信號(hào)頻

31、率位置的變化稱為該原子核的化學(xué)位移。 耦合常數(shù)是化學(xué)位移之外核磁共振譜提供的的另一個(gè)重要信息,所謂耦合指的是臨近原子核自旋角動(dòng)量的相互影響,這種原子核自旋角動(dòng)量的相互作用會(huì)改變?cè)雍俗孕谕獯艌?chǎng)中進(jìn)動(dòng)的能級(jí)分布狀況,造成能級(jí)的裂分,進(jìn)而造成NMR譜圖中的信號(hào)峰形狀發(fā)生變化,通過(guò)解析這些峰形的變化,可以推測(cè)出分子結(jié)構(gòu)中各原子之間的連接關(guān)系。 最后,信號(hào)強(qiáng)度是核磁共振譜的第三個(gè)重要信息,處于相同化學(xué)環(huán)境的原子核在核磁共振譜中會(huì)顯示為同一個(gè)信號(hào)峰,通過(guò)解析信號(hào)峰的強(qiáng)度可以獲知這些原子核的數(shù)量,從而為分子結(jié)構(gòu)的解析提供重要信息。表征信號(hào)峰強(qiáng)度的是信號(hào)峰的曲線下面積積分,這一信息對(duì)于1H-NMR譜尤為重

32、要,而對(duì)于13C-NMR譜而言,由于峰強(qiáng)度和原子核數(shù)量的對(duì)應(yīng)關(guān)系并不顯著,因而峰強(qiáng)度并不非常重要。 早期的核磁共振譜主要集中于氫譜,這是由于能夠產(chǎn)生核磁共振信號(hào)的1H原子在自然界豐度極高,由其產(chǎn)生的核磁共振信號(hào)很強(qiáng),容易檢測(cè)。隨著傅立葉變換技術(shù)的發(fā)展,核磁共振儀可以在很短的時(shí)間內(nèi)同時(shí)發(fā)出不同頻率的射頻場(chǎng),這樣就可以對(duì)樣品重復(fù)掃描,從而將微弱的核磁共振信號(hào)從背景噪音中區(qū)分出來(lái),這使得人們可以收集13C核磁共振信號(hào)。 近年來(lái),人們發(fā)展了二維核磁共振譜技術(shù),這使得人們能夠獲得更多關(guān)于分子結(jié)構(gòu)的信息,目前二維核磁共振譜已經(jīng)可以解析分子量較小的蛋白質(zhì)分子的空間結(jié)構(gòu)。核磁共振成像(Nuclear Magn

33、etic Resonance Imaging,簡(jiǎn)稱NMRI),又稱自旋成像(spin imaging),也稱磁共振成像(Magnetic Resonance Imaging,簡(jiǎn)稱MRI),臺(tái)灣又稱磁振造影,是利用核磁共振(nuclear magnetic resonnance,簡(jiǎn)稱NMR)原理,依據(jù)所釋放的能量在物質(zhì)內(nèi)部不同結(jié)構(gòu)環(huán)境中不同的衰減,通過(guò)外加梯度磁場(chǎng)檢測(cè)所發(fā)射出的電磁波,即可得知構(gòu)成這一物體原子核的位置和種類,據(jù)此可以繪制成物體內(nèi)部的結(jié)構(gòu)圖像。將這種技術(shù)用于人體內(nèi)部結(jié)構(gòu)的成像,就產(chǎn)生出一種革命性的醫(yī)學(xué)診斷工具。快速變化的梯度磁場(chǎng)的應(yīng)用,大大加快了核磁共振成像的速度,使該技術(shù)在臨床診

34、斷、科學(xué)研究的應(yīng)用成為現(xiàn)實(shí),極大地推動(dòng)了醫(yī)學(xué)、神經(jīng)生理學(xué)和認(rèn)知神經(jīng)科學(xué)的迅速發(fā)展。 物理原理核磁共振成像是隨著計(jì)算機(jī)技術(shù)、電子電路技術(shù)、超導(dǎo)體技術(shù)的發(fā)展而迅速發(fā)展起來(lái)的一種生物磁學(xué)核自旋成像技術(shù)。它是利用磁場(chǎng)與射頻脈沖使人體組織內(nèi)進(jìn)動(dòng)的氫核(即H+)發(fā)生章動(dòng)產(chǎn)生射頻信號(hào),經(jīng)計(jì)算機(jī)處理而成像的。原子核在進(jìn)動(dòng)中,吸收與原子核進(jìn)動(dòng)頻率相同的射頻脈沖,即外加交變磁場(chǎng)的頻率等于拉莫頻率,原子核就發(fā)生共振吸收,去掉射頻脈沖之后,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發(fā)射出來(lái),稱為共振發(fā)射。共振吸收和共振發(fā)射的過(guò)程叫做“核磁共振”。核磁共振成像的“核”指的是氫原子核,因?yàn)槿梭w的約70%是由水組成

35、的,MRI即依賴水中氫原子。當(dāng)把物體放置在磁場(chǎng)中,用適當(dāng)?shù)碾姶挪ㄕ丈渌怪舱?,然后分析它釋放的電磁波,就可以得知?gòu)成這一物體的原子核的位置和種類,據(jù)此可以繪制成物體內(nèi)部的精確立體圖像。通過(guò)一個(gè)磁共振成像掃描人類大腦獲得的一個(gè)連續(xù)切片的動(dòng)畫,由頭頂開始,一直到基部。核磁共振成像是隨著-zh-tw:電腦;zh-cn:計(jì)算機(jī)-技術(shù)、電子電路技術(shù)、超導(dǎo)體技術(shù)的發(fā)展而迅速發(fā)展起來(lái)的一種生物磁學(xué)核自旋成像技術(shù)。醫(yī)生考慮到患者對(duì)“核”的恐懼心理,故常將這門技術(shù)稱為磁共振成像。它是利用磁場(chǎng)與射頻脈沖使人體組織內(nèi)進(jìn)動(dòng)的氫核(即H+)發(fā)生章動(dòng)產(chǎn)生射頻信號(hào),經(jīng)-zh-tw:電腦;zh-cn:計(jì)算機(jī)-處理而成像的

36、。 原子核在進(jìn)動(dòng)中,吸收與原子核進(jìn)動(dòng)頻率相同的射頻脈沖,即外加交變磁場(chǎng)的頻率等于拉莫頻率,原子核就發(fā)生共振吸收,去掉射頻脈沖之后,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發(fā)射出來(lái),稱為共振發(fā)射。共振吸收和共振發(fā)射的過(guò)程叫做“核磁共振”。氫核是人體成像的首選核種:人體各種組織含有大量的水和碳?xì)浠衔铮詺浜说暮舜殴舱耢`活度高、信號(hào)強(qiáng),這是人們首選氫核作為人體成像元素的原因。NMR信號(hào)強(qiáng)度與樣品中氫核密度有關(guān),人體中各種組織間含水比例不同,即含氫核數(shù)的多少不同,則NMR信號(hào)強(qiáng)度有差異,利用這種差異作為特征量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組

37、織中的病變組織之間氫核密度、弛豫時(shí)間T1、T2三個(gè)參數(shù)的差異,是MRI用于臨床診斷最主要的物理基礎(chǔ)。當(dāng)施加一射頻脈沖信號(hào)時(shí),氫核能態(tài)發(fā)生變化,射頻過(guò)后,氫核返回初始能態(tài),共振產(chǎn)生的電磁波便發(fā)射出來(lái)。原子核振動(dòng)的微小差別可以被精確地檢測(cè)到,經(jīng)過(guò)進(jìn)一步的計(jì)算機(jī)處理,即可能獲得反應(yīng)組織化學(xué)結(jié)構(gòu)組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運(yùn)動(dòng)的信息。這樣,病理變化就能被記錄下來(lái)。人體2/3的重量為水分,如此高的比例正是磁共振成像技術(shù)能被廣泛應(yīng)用于醫(yī)學(xué)診斷的基礎(chǔ)。人體內(nèi)器官和組織中的水分并不相同,很多疾病的病理過(guò)程會(huì)導(dǎo)致水分形態(tài)的變化,即可由磁共振圖像反應(yīng)出來(lái)。MRI所獲得的圖像非常清晰

38、精細(xì),大大提高了醫(yī)生的診斷效率,避免了剖胸或剖腹探查診斷的手術(shù)。由于MRI不使用對(duì)人體有害的X射線和易引起過(guò)敏反應(yīng)的造影劑,因此對(duì)人體沒(méi)有損害。MRI可對(duì)人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內(nèi)的解剖組織及相鄰關(guān)系,對(duì)病灶能更好地進(jìn)行定位定性。對(duì)全身各系統(tǒng)疾病的診斷,尤其是早期腫瘤的診斷有很大的價(jià)值。系統(tǒng)組成NMR實(shí)驗(yàn)裝置采用調(diào)節(jié)頻率的方法來(lái)達(dá)到核磁共振。由線圈向樣品發(fā)射電磁波,調(diào)制振蕩器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續(xù)變化。當(dāng)頻率正好與核磁共振頻率吻合時(shí),射頻振蕩器的輸出就會(huì)出現(xiàn)一個(gè)吸收峰,這可以在示波器上顯示出來(lái),同時(shí)由頻率計(jì)即刻讀出這時(shí)的共振頻

39、率值。核磁共振譜儀是專門用于觀測(cè)核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產(chǎn)生一個(gè)恒定的磁場(chǎng);探頭置于磁極之間,用于探測(cè)核磁共振信號(hào);譜儀是將共振信號(hào)放大處理并顯示和記錄下來(lái)。MRI系統(tǒng)的組成現(xiàn)代臨床高場(chǎng)(3.0T)MRI掃描器編輯磁鐵系統(tǒng)靜磁場(chǎng):又稱主磁場(chǎng)。當(dāng)前臨床所用超導(dǎo)磁鐵,磁場(chǎng)強(qiáng)度有0.5到4.0T(特斯拉),常見的為1.5T和3.0T;動(dòng)物實(shí)驗(yàn)用的小型MRI則有4.7T、7.0T與9.4T等多種主磁場(chǎng)強(qiáng)度。另有勻磁線圈(shim coil)協(xié)助達(dá)到磁場(chǎng)的高均勻度。 梯度場(chǎng):用來(lái)產(chǎn)生并控制磁場(chǎng)中的梯度,以實(shí)現(xiàn)NMR信號(hào)的空間編碼。這個(gè)系統(tǒng)有三組線圈,產(chǎn)生x、y、z

40、三個(gè)方向的梯度場(chǎng),線圈組的磁場(chǎng)疊加起來(lái),可得到任意方向的梯度場(chǎng)。 射頻系統(tǒng)射頻(RF)發(fā)生器:產(chǎn)生短而強(qiáng)的射頻場(chǎng),以脈沖方式加到樣品上,使樣品中的氫核產(chǎn)生NMR現(xiàn)象。 射頻(RF)接收器:接收NMR信號(hào),放大后進(jìn)入圖像處理系統(tǒng)。 計(jì)算機(jī)圖像重建系統(tǒng)由射頻接收器送來(lái)的信號(hào)經(jīng)A/D轉(zhuǎn)換器,把模擬信號(hào)轉(zhuǎn)換成數(shù)學(xué)信號(hào),根據(jù)與觀察層面各體素的對(duì)應(yīng)關(guān)系,經(jīng)計(jì)算機(jī)處理,得出層面圖像數(shù)據(jù),再經(jīng)D/A轉(zhuǎn)換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級(jí)顯示出欲觀察層面的圖像。MRI的基本方法選片梯度場(chǎng)Gz 相編碼和頻率編碼 圖像重建 MRI在醫(yī)學(xué)上的應(yīng)用原理概述氫核是人體成像的首選核種:人體各種組織含有大

41、量的水和碳?xì)浠衔?,所以氫核的核磁共振靈活度高、信號(hào)強(qiáng),這是人們首選氫核作為人體成像元素的原因。NMR信號(hào)強(qiáng)度與樣品中氫核密度有關(guān),人體中各種組織間含水比例不同,即含氫核數(shù)的多少不同,則NMR信號(hào)強(qiáng)度有差異,利用這種差異作為特征量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時(shí)間T1、T2三個(gè)參數(shù)的差異,是MRI用于臨床診斷最主要的物理基礎(chǔ)。當(dāng)施加一射頻脈沖信號(hào)時(shí),氫核能態(tài)發(fā)生變化,射頻過(guò)后,氫核返回初始能態(tài),共振產(chǎn)生的電磁波便發(fā)射出來(lái)。原子核振動(dòng)的微小差別可以被精確地檢測(cè)到,經(jīng)過(guò)進(jìn)一步的計(jì)算機(jī)處理,即可能獲得反應(yīng)組織化學(xué)結(jié)構(gòu)組

42、成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運(yùn)動(dòng)的信息。這樣,病理變化就能被記錄下來(lái)。人體2/3的重量為水分,如此高的比例正是磁共振成像技術(shù)能被廣泛應(yīng)用于醫(yī)學(xué)診斷的基礎(chǔ)。人體內(nèi)器官和組織中的水分并不相同,很多疾病的病理過(guò)程會(huì)導(dǎo)致水分形態(tài)的變化,即可由磁共振圖像反應(yīng)出來(lái)。MRI所獲得的圖像非常清晰精細(xì),大大提高了醫(yī)生的診斷效率,避免了剖胸或剖腹探查診斷的手術(shù)。由于MRI不使用對(duì)人體有害的X射線和易引起過(guò)敏反應(yīng)的造影劑,因此對(duì)人體沒(méi)有損害。MRI可對(duì)人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內(nèi)的解剖組織及相鄰關(guān)系,對(duì)病灶能更好地進(jìn)行定位定性。對(duì)全身各系統(tǒng)疾病的

43、診斷,尤其是早期腫瘤的診斷有很大的價(jià)值。磁共振成像的優(yōu)點(diǎn)與1901年獲得諾貝爾物理學(xué)獎(jiǎng)的普通X射線或1979年獲得諾貝爾醫(yī)學(xué)獎(jiǎng)的計(jì)算機(jī)層析成像(computerized tomography, CT)相比,磁共振成像的最大優(yōu)點(diǎn)是它是目前少有的對(duì)人體沒(méi)有任何傷害的安全、快速、準(zhǔn)確的臨床診斷方法。如今全球每年至少有6000萬(wàn)病例利用核磁共振成像技術(shù)進(jìn)行檢查。具體說(shuō)來(lái)有以下幾點(diǎn):1.對(duì)軟組織有極好的分辨力。對(duì)膀胱、直腸、子宮、陰道、骨、關(guān)節(jié)、肌肉等部位的檢查優(yōu)于CT; 2.各種參數(shù)都可以用來(lái)成像,多個(gè)成像參數(shù)能提供豐富的診斷信息,這使得醫(yī)療診斷和對(duì)人體內(nèi)代謝和功能的研究方便、有效。例如肝炎和肝硬化的

44、T1值變大,而肝癌的T1值更大,作T1加權(quán)圖像,可區(qū)別肝部良性腫瘤與惡性腫瘤; 3.通過(guò)調(diào)節(jié)磁場(chǎng)可自由選擇所需剖面。能得到其它成像技術(shù)所不能接近或難以接近部位的圖像。對(duì)于椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經(jīng)根、脊髓和神經(jīng)節(jié)等。不像CT只能獲取與人體長(zhǎng)軸垂直的橫斷面; 4.對(duì)人體沒(méi)有氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。 MRI的缺點(diǎn)及可能存在的危害雖然MRI對(duì)患者沒(méi)有致命性的損傷,但還是給患者帶來(lái)了一些不適感。在MRI診斷前應(yīng)當(dāng)采取必要的措施,把這種負(fù)面影響降到最低限度。其缺點(diǎn)主要有:1.和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振

45、檢查仍難以確診,不像內(nèi)窺鏡可同時(shí)獲得影像和病理兩方面的診斷; 2.對(duì)肺部的檢查不優(yōu)于X射線或CT檢查,對(duì)肝臟、胰腺、腎上腺、前列腺的檢查不比CT優(yōu)越,但費(fèi)用要高昂得多; 3.對(duì)胃腸道的病變不如內(nèi)窺鏡檢查; 4.掃描時(shí)間長(zhǎng),空間分辨力不夠理想; 5.由于強(qiáng)磁場(chǎng)的原因,MRI對(duì)諸如體內(nèi)有磁金屬或起搏器的特殊病人卻不能適用。 MRI系統(tǒng)可能對(duì)人體造成傷害的因素主要包括以下方面:1.強(qiáng)靜磁場(chǎng):在有鐵磁性物質(zhì)存在的情況下,不論是埋植在患者體內(nèi)還是在磁場(chǎng)范圍內(nèi),都可能是危險(xiǎn)因素; 2.隨時(shí)間變化的梯度場(chǎng):可在受試者體內(nèi)誘導(dǎo)產(chǎn)生電場(chǎng)而興奮神經(jīng)或肌肉。外周神經(jīng)興奮是梯度場(chǎng)安全的上限指標(biāo)。在足夠強(qiáng)度下,可以產(chǎn)生

46、外周神經(jīng)興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫; 3.射頻場(chǎng)(RF)的致熱效應(yīng):在MRI聚焦或測(cè)量過(guò)程中所用到的大角度射頻場(chǎng)發(fā)射,其電磁能量在患者組織內(nèi)轉(zhuǎn)化成熱能,使組織溫度升高。RF的致熱效應(yīng)需要進(jìn)一步探討,臨床掃描儀對(duì)于射頻能量有所謂“特定吸收率”(specific absorption rate, SAR)的限制; 4.噪聲:MRI運(yùn)行過(guò)程中產(chǎn)生的各種噪聲,可能使某些患者的聽力受到損傷; 造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發(fā)生率在2%-4%。注:右圖為人腦縱切面的核磁共振成像核磁共振成像數(shù)學(xué)運(yùn)算原子核帶正電并有自旋運(yùn)動(dòng),其自旋運(yùn)動(dòng)必將產(chǎn)生磁矩,稱為核

47、磁矩。研究表明,核磁矩<math>mu</math>與原子核的自旋角動(dòng)量S 成正比,即 <math>mu=gamma S qquad (1)</math> 式中 為比例系數(shù),稱為原子核的旋磁比。在外磁場(chǎng)中,原子核自旋角動(dòng)量的空間取向是量子化的,它在外磁場(chǎng)方向上的投影值可表示為 <math>I_z=mh qquad (2)</math> m為核自旋量子數(shù)。依據(jù)核磁矩與自旋角動(dòng)量的關(guān)系,核磁矩在外磁場(chǎng)中的取向也是量子化的,它在磁場(chǎng)方向上的投影值為 <math>mu_z=mgamma h qquad (3)</

48、math> 對(duì)于不同的核,m分別取整數(shù)或半整數(shù)。在外磁場(chǎng)中,具有磁矩的原子核具有相應(yīng)的能量,其數(shù)值可表示為 <math>E = -mu B =-mu_z B = m gamma hB qquad (4)</math> 式中B為磁感應(yīng)強(qiáng)度??梢?,原子核在外磁場(chǎng)中的能量也是量子化的。由于磁矩和磁場(chǎng)的相互作用,自旋能量分裂成一系列分立的能級(jí),相鄰的兩個(gè)能級(jí)之差<math>Delta E = gamma h B</math>。用頻率適當(dāng)?shù)碾姶泡椛湔丈湓雍?,如果電磁輻射光子能?lt;math>hnu</math>恰好為兩相鄰核能

49、級(jí)之差<math>Delta E</math>,則原子核就會(huì)吸收這個(gè)光子,發(fā)生核磁共振的頻率條件是: <math>hnu=gamma hB=gamma hB / 2pi, mboxomega=2pinu=gamma B qquad (5)</math> 式中<math>nu</math>為頻率,<math>omega</math>為角頻率。對(duì)于確定的核,旋磁比<math>gamma</math>可被精確地測(cè)定??梢?,通過(guò)測(cè)定核磁共振時(shí)輻射場(chǎng)的頻率<math>nu&

50、lt;/math>,就能確定磁感應(yīng)強(qiáng)度;反之,若已知磁感應(yīng)強(qiáng)度,即可確定核的共振頻率。 MRI在化學(xué)領(lǐng)域的應(yīng)用MRI在化學(xué)領(lǐng)域的應(yīng)用沒(méi)有醫(yī)學(xué)領(lǐng)域那么廣泛,主要是因?yàn)榧夹g(shù)上的難題及成像材料上的困難,目前主要應(yīng)用于以下幾個(gè)方面: 在高分子化學(xué)領(lǐng)域,如碳纖維增強(qiáng)環(huán)氧樹脂的研究、固態(tài)反應(yīng)的空間有向性研究、聚合物中溶劑擴(kuò)散的研究、聚合物硫化及彈性體的均勻性研究等; 在金屬陶瓷中,通過(guò)對(duì)多孔結(jié)構(gòu)的研究來(lái)檢測(cè)陶瓷制品中存在的砂眼; 在火箭燃料中,用于探測(cè)固體燃料中的缺陷以及填充物、增塑劑和推進(jìn)劑的分布情況; 在石油化學(xué)方面,主要側(cè)重于研究流體在巖石中的分布狀態(tài)和流通性以及對(duì)油藏描述與強(qiáng)化采油機(jī)理的研究。 編輯磁共振成像的其他進(jìn)展核磁共振分析技術(shù)是通過(guò)核磁共振譜線特征參數(shù)(如譜線寬度、譜線輪廓形狀、譜線面積、譜線位置等)的測(cè)定來(lái)分析物質(zhì)的分子結(jié)構(gòu)與性質(zhì)。它可以不破壞被測(cè)樣品的內(nèi)部結(jié)構(gòu),是一種完全無(wú)損的檢測(cè)方法。同時(shí),它具有非常高的分辨本領(lǐng)和精確度,而且可以用于測(cè)量的核也比較多,所有這些都優(yōu)于其它測(cè)量方法。因此,核磁共振技術(shù)在物理、化學(xué)、醫(yī)療、石油化工、考古等方面獲得了

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論