七年級(jí)“相反數(shù)”教案模板_第1頁
七年級(jí)“相反數(shù)”教案模板_第2頁
七年級(jí)“相反數(shù)”教案模板_第3頁
七年級(jí)“相反數(shù)”教案模板_第4頁
七年級(jí)“相反數(shù)”教案模板_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)教案:七年級(jí)數(shù)學(xué)相反數(shù)教案模板教學(xué)目標(biāo) 1了解的意義,會(huì)求有理數(shù)的;2進(jìn)一步培養(yǎng)學(xué)生分類討論的思想和觀察、歸納與概括的能力3初步認(rèn)識(shí)對(duì)立統(tǒng)一的規(guī)律。教學(xué)建議一、重點(diǎn)、難點(diǎn)分析本節(jié)的重點(diǎn)是了解的意義,理解的代數(shù)定義與幾何定義的一致性難點(diǎn)是多重符號(hào)的化簡“只有符號(hào)不同的兩個(gè)數(shù)”中的“只有”指的是除了符號(hào)不同以外完全相同(也就是下節(jié)課要學(xué)的絕對(duì)值相同)。不能理解為只要符號(hào)不同的兩個(gè)數(shù)就互為。另外,“0的是0”也是定義的一部分。關(guān)于“數(shù)a的是a”,應(yīng)該明確的是a不一定是正數(shù),a不一定是正數(shù)。關(guān)于多重符號(hào)的化簡,如果一個(gè)正數(shù)前面有偶數(shù)個(gè)“”號(hào),可以把“”號(hào)一起去掉;一個(gè)正數(shù)前面有奇數(shù)個(gè)“”號(hào),則

2、化簡符號(hào)后只剩一個(gè)“”號(hào)。二、知識(shí)結(jié)構(gòu)的定義 的性質(zhì)及其判定 的應(yīng)用三、教法建議這節(jié)課教學(xué)的主要內(nèi)容是互為的概念。    由于教材先講,后講絕對(duì)值,所以的定義只是形式上的描述,主要通過的幾何意義理解的概念。教學(xué)中建議,直接給出的幾何定義,通過實(shí)例了解求一個(gè)數(shù)的的方法。按著數(shù)軸絕對(duì)值的順序教學(xué),可充分利用數(shù)軸使數(shù)與形更好地結(jié)合起來。 四、的相關(guān)知識(shí)1的意義(1)只有符號(hào)不同的兩個(gè)數(shù)叫做互為,如1999與1999互為。(2)從數(shù)軸上看,位于原點(diǎn)兩旁,且與原點(diǎn)距離相等的兩點(diǎn)所表示的兩個(gè)數(shù)叫做互為。如5與5是互為。(3)0的是0。也只有0的是它的本身。(4)是表

3、示兩個(gè)數(shù)的相互關(guān)系,不能單獨(dú)存在。2的表示在一個(gè)數(shù)的前面添上“”號(hào)就成為原數(shù)的。若 表示一個(gè)有理數(shù),則 的表示為 。在一個(gè)數(shù)的前面添上“+”號(hào)仍與原數(shù)相聯(lián)系同。例如,7=7,特別地,0=0,0=0。3的特性若 互為,則 ,反之若 ,則 互為。4多重符號(hào)化簡(1)的意義是簡化多重符號(hào)的依據(jù)。如 是1的,而1的為+1,所以 。(2)多重符號(hào)化簡的結(jié)果是由“”號(hào)的個(gè)數(shù)決定的。如果“”號(hào)是奇數(shù)個(gè),則果為負(fù);如果是偶然數(shù)個(gè),則結(jié)果為正??珊唽憺椤捌尕?fù)偶正”。例如, 。由此可見,化簡一個(gè)數(shù)就是把多重符號(hào)化成單一符號(hào),若結(jié)果是“+”號(hào),一般省略不寫。(一)一、素質(zhì)教育目標(biāo)(一)知識(shí)教學(xué)點(diǎn)1了解:互為的幾何意

4、義2掌握:給出一個(gè)數(shù)能求出它的(二)能力訓(xùn)練點(diǎn)1訓(xùn)練學(xué)生會(huì)利用數(shù)軸采用數(shù)形結(jié)合的方法解決問題2培養(yǎng)學(xué)生自己歸納總結(jié)規(guī)律的能力(三)德育滲透點(diǎn)1通過解釋的幾何意義,進(jìn)一步滲透數(shù)形結(jié)合的思想2通過求一個(gè)數(shù)的,使學(xué)生進(jìn)一步認(rèn)識(shí)對(duì)應(yīng)、統(tǒng)一規(guī)律(四)美育滲透點(diǎn)1通過求一個(gè)數(shù)的知道任何一個(gè)數(shù)都有它的,學(xué)生會(huì)進(jìn)一步領(lǐng)略到數(shù)的完整美2通過簡化一個(gè)數(shù)的符號(hào),使學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)的簡潔美二、學(xué)法引導(dǎo)1教學(xué)方法:利用引導(dǎo)發(fā)現(xiàn)法,教師注意過渡導(dǎo)語 的設(shè)置,充分發(fā)揮學(xué)生的主體地位2學(xué)生學(xué)法:感性認(rèn)識(shí)理性認(rèn)識(shí)練習(xí)反饋總結(jié)三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法1重點(diǎn):求已知數(shù)的2難點(diǎn):根據(jù)的意義化簡符號(hào)四、課時(shí)安排1課時(shí)五、教具學(xué)

5、具準(zhǔn)備投影儀、三角板、自制膠片六、師生互動(dòng)活動(dòng)設(shè)計(jì)學(xué)生演示,教師點(diǎn)撥,師生共同得出的概念,教師出示投影,學(xué)生以多種形式練習(xí)反饋七、教學(xué)步驟 (一)探索新知,導(dǎo)入  新課1互為的概念的引出演示活動(dòng):要一個(gè)學(xué)生向前走5步,向后走5步提出問題“如果向前為正,向前走5步,向后走5步各記作什么?學(xué)生活動(dòng):一個(gè)學(xué)生口答,即向前走5步記作5;向后走5步記作5步板書 5, 5師:這位同學(xué)兩次行走的距離都是5步,但兩次的方向相反,這就決定這兩個(gè)數(shù)的符號(hào)不同,像這樣的兩個(gè)數(shù)叫做互為板書2.3  【教法說明】由于有了正負(fù)數(shù)的學(xué)習(xí),進(jìn)行以上演示,學(xué)生們非常容易地得出5,5兩數(shù),并能根據(jù)演示過程體會(huì)

6、出這兩個(gè)數(shù)的聯(lián)系與區(qū)別,在輕松愉悅的活動(dòng)中獲得了知識(shí),認(rèn)識(shí)了互為師:畫一數(shù)軸,在數(shù)軸上任意標(biāo)出兩點(diǎn),使這兩點(diǎn)表示的數(shù)互為(一個(gè)學(xué)生板演,其他學(xué)生自練)師:這樣的兩個(gè)數(shù)即互為,你能試述具備什么特點(diǎn)的兩數(shù)是互為?(學(xué)生討論后舉手回答)板書只有符號(hào)不同的兩個(gè)數(shù),其中一個(gè)叫另一個(gè)的【教法說明】在演示活動(dòng)后,已出現(xiàn)了5,5這兩個(gè)數(shù),教師及時(shí)闡明它們就是互為的兩數(shù),這時(shí)不急于總結(jié)互為的概念,而是又提供了一個(gè)學(xué)生體會(huì)概念的機(jī)利用數(shù)軸任找一組互為的兩數(shù),先觀察在數(shù)軸上表示這兩個(gè)數(shù)的點(diǎn)的位置關(guān)系,再觀察兩個(gè)數(shù)本身的特點(diǎn)更形象直觀地引導(dǎo)學(xué)生自己得出的概念2理解概念(出示投影1)判斷:(1)5是5的( )(2)5是

7、5的( )(3)與互為( )(4)5是( )學(xué)生活動(dòng):學(xué)生討論【教法說明】對(duì)概念的理解不是單純地強(qiáng)調(diào),根據(jù)學(xué)生判斷的結(jié)果加深對(duì)“互為”的理解,提高學(xué)生全面分析問題的能力師:0的是0(出示投影2)1在前面畫的數(shù)軸上任意標(biāo)出4個(gè)數(shù),并標(biāo)出它們的2分別說出9,7,0,0.2的3指出2.4,1.7,1各是什么數(shù)的?4的是什么?學(xué)生活動(dòng):1題同桌互相訂正,2、3題搶答【教法說明】1題注意培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的方法理解的概念,讓學(xué)生深知:在數(shù)軸上,原點(diǎn)兩旁,離開原點(diǎn)相等距離的兩個(gè)點(diǎn),所表示的兩個(gè)數(shù)互為2、3、4題是對(duì)的概念的直接運(yùn)用,由特殊的數(shù)到一般的字母,緊扣“只有符號(hào)不同的兩數(shù)即互為”這一概念,又得出

8、一個(gè)非常代數(shù)性的結(jié)論“的是”板書a的是a師:的是,可表示任意數(shù)正數(shù)、負(fù)數(shù)、0,求任意一個(gè)數(shù)的就可以在這個(gè)數(shù)前加一個(gè)“”號(hào)提出問題:若把分別換成5,7,0時(shí),這些數(shù)的怎樣表示?提出問題:前面加“”號(hào)表示的,(1.1)表示什么?(7)呢,(9.8)呢?它們的結(jié)果應(yīng)是多少?學(xué)生活動(dòng):討論、分析、回答【教法說明】利用的概念化簡符號(hào)是這節(jié)課的難點(diǎn)這一環(huán)節(jié),緊緊抓住學(xué)生的心理及時(shí)提問:“既然的是,那么5,7,0的怎樣表示呢?”學(xué)生的思維由一般再引到特殊能答出(鞏固練習(xí)(出示投影3)1是_的,2是_的,3是_的,4是_的,學(xué)生活動(dòng):思考后口答學(xué)生回答后教師引導(dǎo):在一個(gè)數(shù)前面加上“”號(hào)表示求這個(gè)數(shù)的,如果在這

9、些數(shù)前面加上“”號(hào)呢?學(xué)生回答:在一個(gè)數(shù)前面加上“”仍表示這個(gè)數(shù),“”號(hào)可省略并答出以上式子的結(jié)果【教法說明】根據(jù)以上題目學(xué)生對(duì)一數(shù)前面加“”號(hào)表示這數(shù)的和一數(shù)前面加“”號(hào)表示這數(shù)本身都已非常熟悉,這時(shí)可根據(jù)做題情況要學(xué)生及時(shí)分析觀察規(guī)律的存在,這樣可以從學(xué)生思維的不同角度,指引學(xué)生解決問題,并同時(shí)也暗示學(xué)生在做題時(shí)不是單純地演練,一定要注意規(guī)律的總結(jié)鞏固練習(xí):1例題2   簡化(3)(4)的符號(hào)2簡化下列各數(shù)的符號(hào)3自己編題學(xué)生活動(dòng):1、2題搶答,3題分組訓(xùn)練1、2題一定要讓學(xué)生說明每個(gè)式子表示的含義,有助于對(duì)概念的理解3題活躍課堂氣氛,同時(shí)考查了學(xué)生對(duì)這一知識(shí)的理解掌握

10、程度(三)歸納小結(jié)師:我們這節(jié)課學(xué)習(xí)了,歸納如下:1_的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的2表示求的_,表示_學(xué)生活動(dòng):空中內(nèi)容由學(xué)生填出【教法說明】通過問題形式歸納出本節(jié)的重點(diǎn)(四)回顧反饋11.6是_的,_的是0.32下列幾對(duì)數(shù)中互為的一對(duì)為( )A和B與C與35的是_;的是_;的是_4若,則;若,則5若是負(fù)數(shù),則是_數(shù);若是負(fù)數(shù),則是_數(shù)學(xué)生活動(dòng):分組互相回答,互相討論,3、4、5題每組出一個(gè)同學(xué)口答【教法說明】1,2題是對(duì)本節(jié)課的重點(diǎn)知識(shí)進(jìn)行復(fù)習(xí)3、4、5題是從不同角度考查學(xué)生對(duì)概念的理解情況,對(duì)學(xué)有余力的同學(xué)是一個(gè)提高八、隨堂練習(xí)1填表 原數(shù)   

11、;    0       3    7  倒數(shù)        12選擇題(1)下列說法中,正確的是( )A一個(gè)數(shù)的一定是負(fù)數(shù)B兩個(gè)符號(hào)不同的數(shù)一定是C等于本身的數(shù)只有零D的是2(2)下列各組九中,是互為的組數(shù)有( )和(1)和(1)(2)和(2) 和A4組 B3組 C2組 D1組(3)下列語句中敘述正確的是( )A是正數(shù)B如果,那么C如果,那么D如果是負(fù)數(shù),那么是正數(shù)

12、九、布置作業(yè) (一)必做題:課本第61頁A組2、3(二)選做題:課本第62頁B組1、2十、板書設(shè)計(jì)  2.3   1只有符號(hào)不同的兩個(gè)數(shù)其中一個(gè)是另一個(gè)的20的是03的是  例,隨堂練習(xí)答案1略     2C  B  D作業(yè) 答案(一)必做題:1(1)1.6,0.2,(2),3216,20,50,8.07,(二)選作題:1(1)6,(2)92(1);(2)5),(7),0的結(jié)果,讓學(xué)生自己嘗試得出結(jié)果,突破難點(diǎn)(二)教學(xué)目標(biāo) 1使學(xué)生理解的意義;2使學(xué)生掌握求一個(gè)已知數(shù)的;3培養(yǎng)學(xué)生的觀察、歸納

13、與概括的能力教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):理解的意義,理解的代數(shù)定義與幾何定義的一致性難點(diǎn):多重符號(hào)的化簡課堂教學(xué)過程 設(shè)計(jì)一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題二、師生共同研究的定義特點(diǎn)?引導(dǎo)學(xué)生回答:符號(hào)不同,一正一負(fù);數(shù)字相同像這樣,只有符號(hào)不同的兩個(gè)數(shù),我們說它們互為,如+5與應(yīng)點(diǎn)有什么特點(diǎn)?引導(dǎo)學(xué)生回答:分別在原點(diǎn)的兩側(cè);到原點(diǎn)的距離相等這樣我們也可以說,在數(shù)軸上的原點(diǎn)兩旁,離開原點(diǎn)距離相等的兩個(gè)點(diǎn)所表示的數(shù)互為這個(gè)概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義30的是0這是因?yàn)?既不是正數(shù),也不是負(fù)數(shù),它到原點(diǎn)的距離就是0這是等于它本身的唯一的數(shù)三、運(yùn)用舉例  變

14、式練習(xí)例1  (1)分別寫出9與-7的;例1由學(xué)生完成在學(xué)習(xí)有理數(shù)時(shí)我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?引導(dǎo)學(xué)生觀察例1,自己得出結(jié)論:數(shù)a的是-a,即在一個(gè)數(shù)前面加上一個(gè)負(fù)號(hào)即是它的1當(dāng)a=7時(shí),-a=-7,7的是-7;2當(dāng)-5時(shí),-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=53當(dāng)a=0時(shí),-a=-0,0的是0,因此,-0=0么意思?引導(dǎo)學(xué)生回答:-(-8)表示-8的;-(+4)表示+4的;例2  簡化-(+3),-(-4),+(-6),+(+5)的符號(hào)能自己總結(jié)出簡化符號(hào)的規(guī)律嗎?括號(hào)外的符號(hào)與括號(hào)內(nèi)的符號(hào)同號(hào),則簡化符號(hào)后的數(shù)是正

15、數(shù);括號(hào)內(nèi)、外的符號(hào)是異號(hào),則簡化符號(hào)后的數(shù)是負(fù)數(shù)課堂練習(xí)1填空:(1)+1.3的是_; (2)-3的是_;(5)-(+4)是_的;  (6)-(-7)是_的2簡化下列各數(shù)的符號(hào):-(+8),+(-9),-(-6),-(+7),+(+5)3下列兩對(duì)數(shù)中,哪些是相等的數(shù)?哪對(duì)互為?-(-8)與+(-8);-(+8)與+(-8)四、小結(jié)指導(dǎo)學(xué)生閱讀教材,并總結(jié)本節(jié)課學(xué)習(xí)的主要內(nèi)容:一是理解的定義代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號(hào)的問題五、作業(yè) 1分別寫出下列各數(shù)的:2在數(shù)軸上標(biāo)出2,-4.5,0各數(shù)與它們的3填空:(1)-1.6是_的,_的是-0.24化簡下列各數(shù):5填空:(1)如果a=-13,那么-a=_;(2)如果a=-5.4,那么-a=_;(3)如果-x=-6,那么x=_; (4)如果-x=9,那么x=_課堂教學(xué)設(shè)計(jì)說明教學(xué)過程 是以教學(xué)大綱中“重視基礎(chǔ)知識(shí)的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng)”,“數(shù)學(xué)教學(xué)中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅(jiān)持啟發(fā)式,反對(duì)注入式”等規(guī)定的精神,結(jié)合教材特點(diǎn),以及學(xué)生的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)特征而設(shè)計(jì)的由于內(nèi)容較為簡單,經(jīng)過教師適當(dāng)引導(dǎo),便可使學(xué)生充分參與認(rèn)知過程由于“新”知識(shí)與有關(guān)的“舊”知識(shí)的聯(lián)系較為直接,在教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論