確定帶電粒子在磁場中運動軌跡的方法_第1頁
確定帶電粒子在磁場中運動軌跡的方法_第2頁
確定帶電粒子在磁場中運動軌跡的方法_第3頁
確定帶電粒子在磁場中運動軌跡的方法_第4頁
確定帶電粒子在磁場中運動軌跡的方法_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2)。確定帶電粒子在磁場中運動軌跡的方法帶電粒子在勻強磁場中作圓周運動的問題是近幾年高考的熱點,這些考題不但涉及到洛倫茲力作用下的動力學(xué)問題,而且往往與平面圖形的幾何關(guān)系相聯(lián)系,成為考查學(xué)生綜合分析問題、運用數(shù)字知識解決物理問題的難度較大的考題。但無論這類問題情景多么新穎、設(shè)問多么 巧妙,其關(guān)鍵一點在于規(guī)范、準(zhǔn)確地畫出帶電粒子的運動軌跡。只要確定了帶電粒子的運動軌 跡,問題便迎刃而解。下面舉幾種確定帶電粒子運動軌跡的方法。一、對稱法帶電粒子如果從勻強磁場的直線邊界射入又從該邊界射出,則其軌跡關(guān)于入射點和出射 點線段的中垂線對稱,且入射速度方向與出射速度方向與邊界的夾角相等(如圖1 );帶電粒子

2、如果沿半徑方向射入具有圓形邊界的勻強磁場,則其射出磁場時速度延長線必過圓心(如圖利用這兩個結(jié)論可以輕松畫出帶電粒子的運動軌跡,找出相應(yīng)的幾何關(guān)系。例2.如圖5所示,在半徑為r的圓形區(qū)域內(nèi),有一個勻強磁場。一帶電粒子以速度vo從M點沿半徑方向射入磁場區(qū),并由N點射出,0點為圓心。當(dāng)/ M0# 120。時,求:帶電粒子在磁場區(qū)的偏轉(zhuǎn)半徑 R及在磁場區(qū)中的運動時間。第1頁共7頁第1頁XS-L點0以與MN成30角的同樣速度 v射入磁場 出時相距多遠?射出的時間差是多少?圈3JV例1.如圖3所示,直線 MN上方有磁感應(yīng)強度為 B的勻強磁場。正、負電子同時從同一(電子質(zhì)量為 m電荷為e),它們從磁場中射解

3、析:分別過M N點作半徑OM ON勺垂線,此兩垂線的交點O即為帶電粒子作圓周運動時圓弧軌道的圓心,如圖6所示。由圖中的幾何關(guān)系可知,圓弧MN所對的軌道圓心角為 60 , O O的邊線為該圓心角的角平分線,由此可得帶電粒子圓軌道半徑為R=r/tan30 =.-.R二些又帶電粒子的軌道半徑可表示為:八故帶電粒子運動周期:w 2m 2岔乳T =rqE 旳帶電粒子在磁場區(qū)域中運動的時間 -二、旋轉(zhuǎn)圓法在磁場中向垂直于磁場的各個方向發(fā)射速度大小相同的帶電粒子時,帶電粒子的運動軌 跡是圍繞發(fā)射點旋轉(zhuǎn)的半徑相同的動態(tài)圓(如圖7),用這一規(guī)律可快速確定粒子的運動軌跡。第1頁共7頁第#頁Az 距s=2r=二,由

4、圖還看出經(jīng)歷時間相差匚,所以解此題的關(guān)鍵是找圓心、找圖-?解析:正、負電子的半徑和周期是相同的。只是偏轉(zhuǎn)方向相反。先確定圓心,畫出半徑 和軌跡(如圖4),由對稱性知:射入、射出點和圓心恰好組成正三角形。所以兩個射出點相、 2T 4冊半徑和用對稱。第1頁共7頁第#頁例3.如圖8所示,S為電子源,它在紙面360度范圍內(nèi)發(fā)射速度大小為vo,質(zhì)量為m電量為q的電子(q0), MN是一塊足夠大的豎直擋板,與S的水平距離為L,擋板左側(cè)充滿垂直紙面向外的勻強磁場,fi* TT ,vN圖-g磁感應(yīng)強度大小為mv/qL,求擋板被電子擊中的范圍為多大?圖-9解析:由于粒子從同一點向各個方向發(fā)射,粒子的軌跡為繞圓的

5、每一個圓都是逆時針旋轉(zhuǎn),這樣可以作出打到最高點與最低點的軌跡,如圖 點為動態(tài)圓與MN勺相切時的交點 P,最低點為動態(tài)圓與帶電粒子在磁場中作圓周運動,由洛侖茲力提供向心力,S點旋轉(zhuǎn)的動態(tài)圓,且動態(tài)9所示,最高 MN相割,且SQ為直徑時Q為最低點,JDF由廠二得汀7解析:設(shè)粒子的發(fā)射速度為 v,粒子做圓周運動的半徑為 R由牛頓第二定律和洛侖茲力。vqvB-m公式得:三,解得:SQ為直徑,則:SQ:2L,SO=L,由幾何關(guān)系得:從O點以半徑R (- v Rv a)動時間最長的粒子,其軌跡是圓心為作“動態(tài)圓”,如圖11所示,由圖不難看出,在磁場中運C的圓弧,圓弧與磁場的邊界相切。設(shè)該粒子在磁場中的P為

6、切點,所以O(shè)P= L ,所以粒子能擊中的范圍為1+ Ti 運動時間為t,依題意-,所以/ oca _。第1頁共7頁第3頁解得:(2 一綁團-12a例4. (2010全國新課程卷)如圖 10所示,在0W xw A. 0w yw -范圍內(nèi)有垂直于 xy平面向外的勻強磁場,磁感應(yīng)強度大小為Bo坐標(biāo)原點O處有一個粒子源,在某時刻發(fā)射大量質(zhì)量為m電荷量為q的帶正電粒子,它們的速度大小相同,速度方向均在 xy平面內(nèi),與ya軸正方向的夾角分布在 090范圍內(nèi)。己知粒子在磁場中做圓周運動的半徑介于-到a之間,從發(fā)射粒子到粒子全部離開磁場經(jīng)歷的時間恰好為粒子在磁場中做圓周運動周期的四分之一。求最后離開磁場的粒子

7、從粒子源射出時的:(1)速度大??;(2)速度方向與y軸正方向夾角正弦。設(shè)最后離開磁場的粒子的發(fā)射方向與 y軸正方向的夾角為a,由幾何關(guān)系得:R 汕盤二 R-冷-.-.22,J ,,再加上二三、縮放圓法帶電粒子以大小不同,方向相同的速度垂直射入勻強磁場中,作 圓周運動的半徑隨著速度的變化而變化,因此其軌跡為半徑縮放的動 態(tài)圓(如圖12),利用縮放的動態(tài)圓,可以探索出臨界點的軌跡,使 問題得到解決。第1頁共7頁第#頁例5.如圖13所示,勻強磁場中磁感應(yīng)強度為 B,寬度為d, 電子從左邊界垂直勻強磁場射 入,入射方向與邊界的夾角為 0,已知電子的質(zhì)量為 m電量為e,要使電子能從軌道的另- 側(cè)射出,求

8、電子速度大小的范圍。E-16當(dāng)入射速度很小時電子會在磁場中轉(zhuǎn)動一段圓弧后又從同一側(cè)射出, 速率越大,軌道半徑越大,當(dāng)軌道與邊界相切時, 個臨界值時便從右邊界射出,設(shè)此時的速率為得:葉r cos 0 =d解析:如圖14所示,電子恰好不能從另一側(cè)射出,當(dāng)速率大于這Vo,帶電粒子在磁場中作圓周運動,由幾何關(guān)系解析:由題意知,所有離子在平行金屬板之間做勻速直線運動,則有:qvB=qU/d,解得離子的速度為:v=U/B0d (為一定數(shù)值)。雖然離子速度大小不變,但質(zhì)量m改變,結(jié)合帶電離子在磁場中做勻速圓周運動的半徑公式R=mv/qB分析,可畫出不同質(zhì)量的帶電離子在磁場中的運動軌跡,如圖16中的動態(tài)圓。(

9、1 )由題意知,離子甲的運動軌跡是圖17中的半圓,半圓與 EG邊相切于A點,與EF邊垂直相交于 B點,由幾何關(guān)系可得半徑:Racos30 tan15 = (_: ) a,電子在磁場中運動時洛倫茲力提供向心力:ev.B二耀丄r ,所以:從而求得離子甲的質(zhì)量Bed卩。=聯(lián)立解得:二,所以電子從另一側(cè)射出的條件是速度大于(2)離子乙的運動軌跡如圖18所示,在 EIQ中,由余弦定理得:(+(尹.2(鵜噸血6,解得R 乙=a/4 ,第1頁共7頁第5頁從而求得乙離子的質(zhì)量adqBBm 乙= _。例6.(2010全國II卷)如圖15所示,左邊有一對平行金屬板,兩板的距離為 d,電壓為U,兩板間有勻強磁場,磁

10、感應(yīng)強度為Bo,方面平行于板面并垂直紙面朝里。圖中右邊有一邊長為a的正三角形區(qū)域 EFGEF邊與金屬板垂直),在此區(qū)域內(nèi)及其邊界上也有勻強磁場, 磁感應(yīng)強度大小為 B,方向垂直紙面向里。假設(shè)一系列電荷量為 q的正離子沿平行于金屬板面、 垂直于磁場的方向射入金屬板之間,沿同一方向射出金屬板間的區(qū)域,并經(jīng)EF邊中點H射入磁場區(qū)域。不計重力。第1頁共7頁第#頁第1頁共7頁第#頁(1)已知這些離子中的離子甲到達邊界EG后,從邊界EF穿出磁場,求離子甲的質(zhì)量;(2) 已知這些離子中的離子乙從EG邊上的I點(圖中未畫出)穿出磁場,且GI長為3a/4,求離子乙的質(zhì)量;(3) 若這些離子中的最輕離子的質(zhì)量等于

11、離子甲質(zhì)量的一半,而離子乙的質(zhì)量是最大的, 問磁場邊界上什么區(qū)域內(nèi)可能有離子到達?(3)由半徑公式R=mv/qB知m 結(jié)合(1)(2)問分析可得:若離子的質(zhì)量滿足 m甲/2 me m甲,則所有離子都垂直 EH邊離開磁場,離開磁場的位置到H的距離介于R甲到2R甲之間,即一,第1頁共7頁第#頁若離子的質(zhì)量滿足 m甲m m乙,則所有離子都從 EG邊離開磁場,離開磁場的位置介于- (1)盤A到I之間,其中 AE的距離AE-,IE距離IE。四、臨界法以題目中的“恰好”“最大” “最高”“至少”等詞語為突破口,借助半徑r和速度v以及磁場B之間的約束關(guān)系進行動態(tài)軌跡分析,確定軌跡圓和邊界的關(guān)系,找出臨界點,

12、然后 利用數(shù)學(xué)方法求解極值,畫出臨界點的軌跡是解題的關(guān)鍵。例7.長為L的水平極板間,有垂直紙面向內(nèi)的勻強磁場,如圖19所示,磁感應(yīng)強度為B,板間距離也為 L,兩極板不帶電,現(xiàn)有質(zhì)量為m電量為q的帶負電粒子(不計重力)從左邊極板間中點處垂直磁感線以水平速度v射入磁場,欲使粒子打到極板上,求初速度的范圍。例8如圖22, 一足夠長的矩形區(qū)域 abed內(nèi)充滿磁感應(yīng)強度為 B,方向垂直紙面向里的勻強磁場,現(xiàn)從矩形區(qū)域 ad邊中點O射出與Od邊夾角為30,大小為V。的帶電粒子,已知 粒子質(zhì)量為 m電量為q, ad邊長為L, ab邊足夠長,粒子重力忽略不計。求:(1)試求粒子能從ab邊上射出磁場的vo的大小

13、范圍;(2)粒子在磁場中運動的最長時間和在這種情況下粒子從磁場中射出所在邊上位置的范 圍。0-190-21解析:由左手定則判定受力向下,所以向下偏轉(zhuǎn), 20、圖21所示,打到右邊界時,在直角三角形.5LT臨界狀態(tài),分別作出兩個狀態(tài)的軌跡圖,如圖附二(R 紂+厶2OAB1中由幾何關(guān)系得:電子在磁場中運動時洛倫茲力提供向心力恰好打到下板右邊界和左邊界為兩個解得軌道半徑5qBLVj 因此二込打在左側(cè)邊界時,如圖 21所示,由幾何關(guān)系得軌跡半徑電子在磁場中運動時洛倫茲力提供向心力,所以打在板上時速度的范圍為qBL 5qBL v解析:(1)畫出從O點射入磁場的粒子運動軌跡的動態(tài)圓,能夠從軌跡如圖徑 r1

14、=L,-圖君ab邊射出的粒子的臨界23所示,軌跡與de邊相切時,射到 ab邊上的A點,此時軌跡圓心為 O,則軌道半V由-1得最大速度qBLV5 二m 。軌跡與ab邊相切時,射到 ab邊上的B點,此時軌跡圓心為O,則軌道半徑r2=L/3,由qBL所以粒子能夠從ab邊射出的速度范圍為:qBL qBL?.Vo;:。(2)當(dāng)粒子從ad邊射出時,時間均相等,且為最長時間,因轉(zhuǎn)過的圓心角為300 ,所以最長時間:亠,射出的范圍為:O(=2=L/3。通過以上分析不難發(fā)現(xiàn),對于帶電粒子在磁場中的運動問題,解題的關(guān)鍵是畫出帶電粒 子在勻強磁場中的運動軌跡,如果能夠熟練掌握帶電粒子在磁場中運動軌跡的上述四種畫法,

15、 很多問題都可以迎刃而解。涉及圓周的某些綜合題, 常要在圓周里構(gòu)建直角三角形來幫助解答。這些直角三角形大多由該圓周的半徑、弦或切線構(gòu)成。這里用幾道高考壓軸題”為例來說明。第1頁共7頁第7頁例2 ( 2007全國2)如圖所示,在坐標(biāo)系Oxy的第一象限中存在沿 y軸正方向的勻強磁場, 場強大小為E。在其它象限中存在勻強磁場,磁場方向垂直于紙面向里。A是y軸上的一點,它到坐標(biāo)原點 O的距離為h; C是x軸上的一點,至U O的距離為I。一質(zhì)量為m電荷量為q的 帶負電的粒子以某一初速度沿x軸方向從A點進入電場區(qū)域, 繼而通過C點進入磁場區(qū)域。 并再次通過A點,此時速度方向與 y軸正方向成銳角。不計重力作

16、用。試求:(1) 粒子經(jīng)過C點速度的大小和方向;(2) 磁感應(yīng)強度的大小 B。Vi=由式得V!= W:設(shè)粒子經(jīng)過C點時的速度方向與X軸的夾角為a ,tan a = 2h由式得 a = arctan .分析:運動過程包含類平拋和勻速圓周運動。第(2)問較難。欲求 B值,要先算出圓周半徑R,應(yīng)構(gòu)建相應(yīng)的直角三角形, 如下圖中的 APD 以及 CPB .再由已知的h和L來求解(見解答中的式和(11)。解:(1)以a表示粒子在電場作用下的加速度,有qE= ma加速度沿y軸負方向。設(shè)粒子從 A點進入電場時的初速度 為vo,由A點運動到C點經(jīng)歷的時間為t,則有1(2)粒子經(jīng)過C點進入磁場后在磁場中作速率為

17、v的圓周運動。則有qvB= m設(shè)圓心為P,貝U PC必與過C點的速度垂直,且有丄J=1軸的夾角,由幾何關(guān)系得Rcos 3 = Rcos a + hRs in 3 = l Rs in ah= at2I = Vot由(11)式解得由式得由(12)式得則有若圓周的半徑為R,。用3表示匸與y2(13)設(shè)粒子從點進入磁場時的速度為V, V垂直于x軸的分量第1頁共7頁第9頁值得歸納的是,例題 1和例題2有共通的地方,即利用兩個直角三角形,來建立兩第1頁共7頁第10頁第1頁共7頁第#頁且F=d得: B=個已知長度和一個未知半徑的聯(lián)系。題1中是用、求半徑R;題2中是用h、I求半徑R,而接下來的例題 3,仍然涉

18、及兩個直角三角形,但這次是用兩個已知的半徑來求解一個未知的 長度。例3( 2008重慶)下圖是一種質(zhì)譜儀的工作原理示意圖。在以O(shè)為圓心,OH為對稱軸,夾角為2 a的扇形區(qū)域內(nèi)分布著方向垂直于紙面的勻強磁場。對稱于OH軸的C和D分別是離子發(fā)射點和收集點。 CM垂直磁場左邊界于 M且OMd?,F(xiàn)有一正離子束以小發(fā)散角(紙面內(nèi))從C射出,這些離子在CM方向上的分速度均為 Vo。若該離子束中比荷為 ;的離子都能匯聚到 D,試求:由左手定則知,磁場方向垂直紙面向外。(2)設(shè)沿CN運動的離子速度大小為v,在磁場中的軌道半徑為R,運動時間為t,d聯(lián)立得 R = _二2觀離子在磁場中做勻速圓周運動的周期T=:二

19、 ea 2(0 +a)結(jié)合得t=Tx =第1頁共7頁第11頁第1頁共7頁第#頁(3)由圖可知 CM H :?(1) 磁感應(yīng)強度的大小和方向(提示:可考慮沿CM方向運動的離子為研究對象);(2) 離子沿與CM成 0角的直線CN進入磁場,其軌道半徑和在磁場中的運動時間;(3) 線段CM的長度。分析:在第(2)問的過程中,圓心上移了,但運動軌跡是對稱的;第(3)問難度加大,而下圖中的和丄一匚,會有助于建立已知量 OM和 O N,與未知量NM之間的聯(lián)系(見解答中的式),便于 CM的求解。解:(1)設(shè)沿CM方向運動的離子在磁場中做圓周運動的軌道半徑為R第1頁共7頁第#頁再由:/? -F./: :l. A :.:I-!l聯(lián)立求解得CM d cot E_:: F間接得到,因為_匸J不在直角三角形中,難與各邊建立三角函數(shù)關(guān)系。 而和_1 _ 各是兩直角三角形(ZI F00i 和 C05 )中的內(nèi)角,便于用反三 角函數(shù)表示,見解答中的式和式。第1頁共7頁第12頁第1頁共7頁第#頁解:設(shè)探月衛(wèi)星的質(zhì)量為 g萬有引力常量為 G根據(jù)萬有引力定律有Ml+d 尺注:若引入正弦定理,利用非直角三角形-,也能得出|1 I ;.二上,可代替式。第1頁共7頁第#頁跳出磁場,在其他

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論