


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、3.3-1兩直線的交點(diǎn)坐標(biāo)三維目標(biāo)知識與技能:1。直線和直線的交點(diǎn) 2二元一次方程組的解過程和方法:1。學(xué)習(xí)兩直線交點(diǎn)坐標(biāo)的求法,以及判斷兩直線位置的方法。 2掌握數(shù)形結(jié)合的學(xué)習(xí)法。 3組成學(xué)習(xí)小組,分別對直線和直線的位置進(jìn)行判斷,歸納過定點(diǎn)的 直線系方程。情態(tài)和價(jià)值:1。通過兩直線交點(diǎn)和二元一次方程組的聯(lián)系,從而認(rèn)識事物之間的內(nèi) 的聯(lián)系。 2能夠用辯證的觀點(diǎn)看問題。教學(xué)重點(diǎn),難點(diǎn)重點(diǎn):判斷兩直線是否相交,求交點(diǎn)坐標(biāo)。難點(diǎn):兩直線相交與二元一次方程的關(guān)系。教學(xué)方法:啟發(fā)引導(dǎo)式 在學(xué)生認(rèn)識直線方程的基礎(chǔ)上,啟發(fā)學(xué)生理解兩直線交點(diǎn)與二元一次方程組的的相互關(guān)系。引導(dǎo)學(xué)生將兩直線交點(diǎn)的求解問題轉(zhuǎn)化為相
2、應(yīng)的直線方程構(gòu)成的二元一次方程組解的問題。由此體會“形”的問題由“數(shù)”的運(yùn)算來解決。教具:用POWERPOINT課件的輔助式教學(xué)教學(xué)過程:一 情境設(shè)置,導(dǎo)入新課用大屏幕打出直角坐標(biāo)系中兩直線,移動直線,讓學(xué)生觀察這兩直線的位置關(guān)系。課堂設(shè)問一:由直線方程的概念,我們知道直線上的一點(diǎn)與二元一次方程的解的關(guān)系,那如果兩直線相交于一點(diǎn),這一點(diǎn)與這兩條直線的方程有何關(guān)系?二 講授新課1 分析任務(wù),分組討論,判斷兩直線的位置關(guān)系已知兩直線L1:A1x+B1y +C1=0,L2:A2x+B2y+C2=0如何判斷這兩條直線的關(guān)系? 教師引導(dǎo)學(xué)生先從點(diǎn)與直線的位置關(guān)系入手,看表一,并填空。 幾何元素及關(guān)系 代
3、數(shù)表示點(diǎn)A A(a,b)直線LL:Ax+By+C=0點(diǎn)A在直線上直線L1與 L2的交點(diǎn)A課堂設(shè)問二:如果兩條直線相交,怎樣求交點(diǎn)坐標(biāo)?交點(diǎn)坐標(biāo)與二元一次方程組有什關(guān)系?學(xué)生進(jìn)行分組討論,教師引導(dǎo)學(xué)生歸納出兩直線是否相交與其方程所組成的方程組有何關(guān)系?(1) 若二元一次方程組有唯一解,L 1與L2 相交。(2) 若二元一次方程組無解,則L 1與 L2平行。(3) 若二元一次方程組有無數(shù)解,則L 1 與L2重合。課后探究:兩直線是否相交與其方程組成的方程組的系數(shù)有何關(guān)系?2 例題講解,規(guī)范表示,解決問題例題1:求下列兩直線交點(diǎn)坐標(biāo)L1 :3x+4y-2=0L1:2x+y +2=0 解:解方程組 得
4、 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2),如圖3。3。1。教師可以讓學(xué)生自己動手解方程組,看解題是否規(guī)范,條理是否清楚,表達(dá)是否簡潔,然后才進(jìn)行講解。同類練習(xí):書本110頁第1,2題。例2 判斷下列各對直線的位置關(guān)系。如果相交,求出交點(diǎn)坐標(biāo)。(1) L1:x-y=0,L2:3x+3y-10=0(2) L1:3x-y=0,L2:6x-2y=0(3) L1:3x+4y-5=0,L2:6x+8y-10=0 這道題可以作為練習(xí)以鞏固判斷兩直線位置關(guān)系。三 啟發(fā)拓展,靈活應(yīng)用。課堂設(shè)問一。當(dāng)變化時(shí),方程 3x+4y-2+(2x+y+2)=0表示何圖形,圖形有何特點(diǎn)?求出圖形的交點(diǎn)坐標(biāo)。
5、(1) 可以一用信息技術(shù),當(dāng) 取不同值時(shí),通過各種圖形,經(jīng)過觀察,讓學(xué)生從直觀上得出結(jié)論,同時(shí)發(fā)現(xiàn)這些直線的共同特點(diǎn)是經(jīng)過同一點(diǎn)。(2) 找出或猜想這個(gè)點(diǎn)的坐標(biāo),代入方程,得出結(jié)論。(3) 結(jié)論,方程表示經(jīng)過這兩條直線L1 與L2的交點(diǎn)的直線的集合。 例2 已知為實(shí)數(shù),兩直線:,:相交于一點(diǎn),求證交點(diǎn)不可能在第一象限及軸上.分析:先通過聯(lián)立方程組將交點(diǎn)坐標(biāo)解出,再判斷交點(diǎn)橫縱坐標(biāo)的范圍.解:解方程組若0,則1.當(dāng)1時(shí),0,此時(shí)交點(diǎn)在第二象限內(nèi).又因?yàn)闉槿我鈱?shí)數(shù)時(shí),都有10,故0因?yàn)?(否則兩直線平行,無交點(diǎn)) ,所以,交點(diǎn)不可能在軸上,得交點(diǎn)()四 小結(jié):直線與直線的位置關(guān)系,求兩直線的交點(diǎn)坐標(biāo),能將幾何問題轉(zhuǎn)化為代數(shù)問題來解決,并能進(jìn)行應(yīng)用。五 練習(xí)及作業(yè):1 光線從M(-2,3)射到x軸上的一點(diǎn)P(1,0)后被x軸反射,求反射光線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津?yàn)I海汽車工程職業(yè)學(xué)院《定性數(shù)據(jù)分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 天津理工大學(xué)中環(huán)信息學(xué)院《工程招投標(biāo)合同管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧中醫(yī)藥大學(xué)杏林學(xué)院《運(yùn)籌學(xué)與最優(yōu)化算法》2023-2024學(xué)年第一學(xué)期期末試卷
- 寧夏工商職業(yè)技術(shù)學(xué)院《化學(xué)學(xué)科教育學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 嘉應(yīng)學(xué)院《幼兒合唱與指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省臨沂市重點(diǎn)中學(xué)2024-2025學(xué)年高考數(shù)學(xué)試題實(shí)戰(zhàn)演練仿真卷含解析
- 上海中醫(yī)藥大學(xué)《康復(fù)療法學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 宣化科技職業(yè)學(xué)院《創(chuàng)業(yè)形象設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 開卷教育聯(lián)盟2025年高三物理試題測驗(yàn)(2.22)含解析
- 徐州生物工程職業(yè)技術(shù)學(xué)院《英語視聽說IV》2023-2024學(xué)年第一學(xué)期期末試卷
- 嘉峪關(guān)的壯麗長城之旅
- 臨床研究數(shù)據(jù)的合理解讀與報(bào)告撰寫
- 中考英語閱讀理解:圖表類(附參考答案)
- 農(nóng)作物病蟲害防治服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 堿金屬元素教案及反思
- 掃地機(jī)器人創(chuàng)業(yè)項(xiàng)目計(jì)劃書
- 自愿贈與10萬協(xié)議書范本
- 學(xué)校教學(xué)常規(guī)檢查記錄表
- 單位車輛領(lǐng)取免檢標(biāo)志委托書范本
- 投資項(xiàng)目敏感性分析模型模板
- 醫(yī)療美容診所規(guī)章制度
評論
0/150
提交評論