數(shù)論因數(shù)與倍數(shù)因數(shù)個數(shù)_第1頁
數(shù)論因數(shù)與倍數(shù)因數(shù)個數(shù)_第2頁
數(shù)論因數(shù)與倍數(shù)因數(shù)個數(shù)_第3頁
數(shù)論因數(shù)與倍數(shù)因數(shù)個數(shù)_第4頁
數(shù)論因數(shù)與倍數(shù)因數(shù)個數(shù)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、因數(shù)與倍數(shù)知識框架一、 約數(shù)的概念與最大公約數(shù)0被排除在約數(shù)與倍數(shù)之外1 求最大公約數(shù)的方法分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來例如:,所以;短除法:先找出所有共有的約數(shù),然后相乘例如:,所以;輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)用輾轉(zhuǎn)相除法求兩個數(shù)的最大公約數(shù)的步驟如下:先用小的一個數(shù)除大的一個數(shù),得第一個余數(shù);再用第一個余數(shù)除小的一個數(shù),得第二個余數(shù);又用第二個余數(shù)除第一個余數(shù),得第三個余數(shù);這樣逐次用后一個余數(shù)去除前一個余數(shù),直到余數(shù)是0為止那么,最后一個除數(shù)就是所求的最大公約數(shù)(如果最后的除數(shù)是1,那么原來的兩個數(shù)是互質(zhì)的)例如

2、,求600和1515的最大公約數(shù):;所以1515和600的最大公約數(shù)是152 最大公約數(shù)的性質(zhì)幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù);幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù);幾個數(shù)都乘以一個自然數(shù),所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以3 求一組分?jǐn)?shù)的最大公約數(shù)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),其他分?jǐn)?shù)不變;求出各個分?jǐn)?shù)的分母的最小公倍數(shù)a;求出各個分?jǐn)?shù)的分子的最大公約數(shù)b;即為所求二、倍數(shù)的概念與最小公倍數(shù)1. 求最小公倍數(shù)的方法分解質(zhì)因數(shù)的方法;例如:,所以;短除法求最小公倍數(shù);例如: ,所以;2. 最小公倍數(shù)的性質(zhì)兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)兩個互質(zhì)的數(shù)的

3、最小公倍數(shù)是這兩個數(shù)的乘積兩個數(shù)具有倍數(shù)關(guān)系,則它們的最大公約數(shù)是其中較小的數(shù),最小公倍數(shù)是較大的數(shù)3. 求一組分?jǐn)?shù)的最小公倍數(shù)方法步驟先將各個分?jǐn)?shù)化為假分?jǐn)?shù);求出各個分?jǐn)?shù)分子的最小公倍數(shù);求出各個分?jǐn)?shù)分母的最大公約數(shù);即為所求例如: 注意:兩個最簡分?jǐn)?shù)的最大公約數(shù)不能是整數(shù),最小公倍數(shù)可以是整數(shù).例如:三、最大公約數(shù)與最小公倍數(shù)的常用性質(zhì)1 兩個自然數(shù)分別除以它們的最大公約數(shù),所得的商互質(zhì)。如果為、的最大公約數(shù),且,那么互質(zhì),所以、的最小公倍數(shù)為,所以最大公約數(shù)與最小公倍數(shù)有如下一些基本關(guān)系:,即兩個數(shù)的最大公約數(shù)與最小公倍數(shù)之積等于這兩個數(shù)的積;最大公約數(shù)是、及最小公倍數(shù)的約數(shù)2 兩個數(shù)的

4、最大公約和最小公倍的乘積等于這兩個數(shù)的乘積。即,此性質(zhì)比較簡單,學(xué)生比較容易掌握。3 對于任意3個連續(xù)的自然數(shù),如果三個連續(xù)數(shù)的奇偶性為a)奇偶奇,那么這三個數(shù)的乘積等于這三個數(shù)的最小公倍數(shù)例如:,210就是567的最小公倍數(shù)b)偶奇偶,那么這三個數(shù)的乘積等于這三個數(shù)最小公倍數(shù)的2倍例如:,而6,7,8的最小公倍數(shù)為性質(zhì)(3)不是一個常見考點,但是也比較有助于學(xué)生理解最小公倍數(shù)與數(shù)字乘積之間的大小關(guān)系,即“幾個數(shù)最小公倍數(shù)一定不會比他們的乘積大”。四、求約數(shù)個數(shù)與所有約數(shù)的和1 求任一整數(shù)約數(shù)的個數(shù)一個整數(shù)的約數(shù)的個數(shù)是在對其嚴(yán)格分解質(zhì)因數(shù)后,將每個質(zhì)因數(shù)的指數(shù)(次數(shù))加1后所得的乘積。如:1

5、400嚴(yán)格分解質(zhì)因數(shù)之后為,所以它的約數(shù)有(3+1)×(2+1) ×(1+1)=4×3×2=24個。(包括1和1400本身)約數(shù)個數(shù)的計算公式是本講的一個重點和難點,授課時應(yīng)重點講解,公式的推導(dǎo)過程是建立在開篇講過的數(shù)字“唯一分解定理”形式基礎(chǔ)之上,結(jié)合乘法原理推導(dǎo)出來的,不是很復(fù)雜,建議給學(xué)生推導(dǎo)并要求其掌握。難點在于公式的逆推,有相當(dāng)一部分??嫉钠y題型考察的就是對這個公式的逆用,即先告訴一個數(shù)有多少個約數(shù),然后再結(jié)合其他幾個條件將原數(shù)“還原構(gòu)造”出來,或者是“構(gòu)造出可能的最值”。2 求任一整數(shù)的所有約數(shù)的和一個整數(shù)的所有約數(shù)的和是在對其嚴(yán)格分解質(zhì)因

6、數(shù)后,將它的每個質(zhì)因數(shù)依次從1加至這個質(zhì)因數(shù)的最高次冪求和,然后再將這些得到的和相乘,乘積便是這個合數(shù)的所有約數(shù)的和。如:,所以21000所有約數(shù)的和為此公式?jīng)]有第一個公式常用,推導(dǎo)過程相對復(fù)雜,需要許多步提取公因式,建議幫助學(xué)生找規(guī)律性的記憶即可。重難點重點:分解質(zhì)因數(shù)法是一個數(shù)論重點方法,本講另一個授課重點在于讓孩子對這個方法能夠熟練并且靈活運用。難點:在對質(zhì)數(shù)和合數(shù)的基本認識,在這個基礎(chǔ)之上能夠會與之前的一些知識點結(jié)合運用。例題精講【例1】 有三根鐵絲,長度分別是120厘米、180厘米和300厘米.現(xiàn)在要把它們截成相等的小段,每根都不能有剩余,每小段最長多少厘米?一共可以截成多少段?【例2】 一次會餐供有三種飲料.餐后統(tǒng)計,三種飲料共用了65瓶;平均每2個人飲用一瓶A飲料,每3人飲用一瓶B飲料,每4人飲用一瓶C飲料.問參加會餐的人數(shù)是多少人?【例3】 用輾轉(zhuǎn)相除法求4811和1981的最大公約數(shù)?!纠?】現(xiàn)有三個自然數(shù),它們的和是1111,這樣的三個自然數(shù)的公約數(shù)中,最大的可以是多少?【例5】兩個自然數(shù)的和是50,它們的最大公約數(shù)是5,試求這兩個數(shù)的差【例6】一次考試,參加的學(xué)生中有得優(yōu),得良,得中,其余的得差,已知參加考試的學(xué)生不滿50人,那么得差的學(xué)生有多少人?【例7】數(shù)360的約數(shù)有多少個?這些約數(shù)的和是多少? 【例8】求在到中,恰好有個約數(shù)的所有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論