版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優(yōu)質文檔-傾情為你奉上導數(shù)問題中分類討論的方法摘要:近年,高考解答題對導數(shù)部分的考察幾乎都會涉及到對某個參數(shù)的分類討論,而考生的在這一題中的得分率并不高。主要原因有兩個,一是看不懂題意,二是不會分類討論。而分類討論在高考中處于重要的“地位”:分類討論思想是歷年高考的必考內容,它不僅是高考的重點與熱點,而且是高考的難點。每年在中高檔題甚至在低檔題中都設置分類討論問題,通過分類討論考查推理的嚴謹性和分析問題解決問題的能力。本人在幾年的教學生涯中,對這類問題作了一定的探討,并總結出了導數(shù)問題中解答問題的步驟及引起分類討論的原因。 關鍵詞:單調區(qū)間,極值,分類,最值,取值范圍為了更好的解決導數(shù)中分
2、類討論的問題,筆者建議按照下列步驟來解決導數(shù)解答題(1) 求導(2) 令=0(3) 求出=0的根(4) 作出導數(shù)的圖像或等價于導數(shù)的圖像(一般是二次函數(shù)或一次函數(shù)的圖像)(5) 由圖像寫出函數(shù)的單調區(qū)間,極值,或最值規(guī)范了步驟后,在解題過程中涉及到的分類討論一般有:方程=0的類型引起的討論、根的存在引起的討論、根的大小引起的討論、畫圖像時開口或斜率的討論、根與給定區(qū)間:或定義域的端點的大小的討論) 下面筆者結合若干例題對上述的分類討論方法作一一闡述例1:若函數(shù)(a0),求函數(shù)的單調區(qū)間。解:令=0,即: (注意這里方程的類型需要討論)作出的圖像,由圖像可知在(0,2)上為減函數(shù),在(2,+)上
3、為增函數(shù)若由,得<0,>0作出的圖像,由圖像可知在綜上所述:,在(0,2)上為減函數(shù),在(2,+)上為增函數(shù)在例2:(08全國高考)已知函數(shù)f(x)x3ax2x1,aR,討論函數(shù)f(x)的單調區(qū)間解:令 (注意這里根的存在需要討論)若,即,則若由得,,上為增函數(shù) 在上為減函數(shù)綜上所述:時, 上為增函數(shù),在上為減函數(shù)例3.(2010北京) 已知函數(shù)()=In(1+)-+ (0)。求()的單調區(qū)間。解:令=0,即:(這里需要對方程的類型討論)若k=0,則在(-1,0)上為增函數(shù),在(0,+)上為減函數(shù)若k0,由得, (這里需要對兩個根的大小進行討論)若k=1,則,在(-1,)上為增函數(shù)
4、若,則在或上為增函數(shù) 在上為減函數(shù)若,則在或上為增函數(shù) 在上為減函數(shù)綜上所述:若k=0, 在(-1,0)上為增函數(shù),在(0,+)上為減函數(shù)若,在或上為增函數(shù) 在上為減函數(shù)若k=1,在(-1,)上為增函數(shù)若,在或上為增函數(shù) 在上為減函數(shù)例4.(2009北京理改編)設函數(shù),求函數(shù)的單調區(qū)間解:令,即(這里需要對方程的類型討論)若,則,在上為增函數(shù)若k0則由得, (這里需要對的斜率討論)若k>0則在上為減函數(shù),在上為增函數(shù) 若k<0,則在上為增函數(shù),在上為減函數(shù) 綜上所述:若k=0, 在上為增函數(shù)若k>0則在上為減函數(shù),在上為增函數(shù) 若k<0,則在上為增函數(shù),在上為減函數(shù)例5
5、:(海南2011四校聯(lián)考)若對任意的范圍解:令(對方程類型的討論)若p=0,則若p0,由得 (對兩根的大小,定義域的端點、給定區(qū)間的端點大小的討論)若,符合題意若,不符合題意若,符合題意若,符合題意若,符合題意若,不符合題意若,不符合題意若,不符合題意綜上所述:p的取值范圍為下面筆者就海南2010年高考的壓軸題來說明本人提出的解題步驟和討論方法具有一定的實用價值,當然解答的過程可能不夠嚴謹,處于定性的范圍,不足之處,望全體同仁多多指教。例6:(海南2010理)設函數(shù)。若當時,求的取值范圍令(此方程是個超越方程,故根的討論轉換成兩個函數(shù)的交點的問題)即令 ,易求得 在A的切線的斜率為1顯然若有,即則有恒成立即所以,時,即若有,則顯然存在區(qū)間(0,x0)使得時,有,即 即綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《現(xiàn)代社區(qū)會所的人性化設計研究》
- 2024版智能家居定制開發(fā)全面合同2篇
- 《O-型模李超代數(shù)的濾過》
- 2025年度綠色有機西瓜產銷一體化合同范本3篇
- 《我國民事非法證據(jù)排除規(guī)則研究》
- 《小薊化學成分研究》
- 中國介電陶瓷材料行業(yè)市場前景預測及投資價值評估分析報告
- 二零二五年度能源產業(yè)合作協(xié)議書
- 《保鮮濕面品質的研究》
- 《呼倫貝爾市飼草產業(yè)發(fā)展問題研究》
- 《心肺復蘇及電除顫》課件
- 建筑材料供應鏈管理服務合同
- 養(yǎng)殖場巡查制度模板
- 2023-2024學年浙江省杭州市西湖區(qū)五年級(上)期末數(shù)學試卷
- 2024-2025學年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 淋巴水腫康復治療技術
- 礦山隱蔽致災普查治理報告
- 零星維修工程 投標方案(技術方案)
- 護理基礎測試題+參考答案
- 五年級上冊數(shù)學計算題大全
評論
0/150
提交評論