人工神經(jīng)網(wǎng)絡(luò)_第1頁
人工神經(jīng)網(wǎng)絡(luò)_第2頁
人工神經(jīng)網(wǎng)絡(luò)_第3頁
人工神經(jīng)網(wǎng)絡(luò)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、人工神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經(jīng)網(wǎng)絡(luò)(NNs)或稱作連接模型(Connectionist Model),它是一種模范動物神經(jīng)網(wǎng)絡(luò)行為特征,進行分布式并行信息處理的算法數(shù)學(xué)模型。這種網(wǎng)絡(luò)依靠系統(tǒng)的復(fù)雜程度,通過調(diào)整內(nèi)部大量節(jié)點之間相互連接的關(guān)系,從而達到處理信息的目的。人工神經(jīng)網(wǎng)絡(luò)具有自學(xué)習(xí)和自適應(yīng)的能力,可以通過預(yù)先提供的一批相互對應(yīng)的輸入輸出數(shù)據(jù),分析掌握兩者之間潛在的規(guī)律,最終根據(jù)這些規(guī)律,用新的輸入數(shù)據(jù)來推算輸出結(jié)果,這種學(xué)習(xí)分析的過程被稱為“訓(xùn)練”。人工神經(jīng)網(wǎng)絡(luò)是由大量處理單元互聯(lián)組成的非線性、自適應(yīng)信息處理系

2、統(tǒng)。它是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提出的,試圖通過模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式進行信息處理。人工神經(jīng)網(wǎng)絡(luò)具有四個基本特征: (1)非線性關(guān)系是自然界的普遍特性。大腦的智慧就是一種非線性現(xiàn)象。人工神經(jīng)元處于激活或抑制二種不同的狀態(tài),這種行為在數(shù)學(xué)上表現(xiàn)為一種非線性關(guān)系。具有閾值的神經(jīng)元構(gòu)成的網(wǎng)絡(luò)具有更好的性能,可以提高容錯性和存儲容量。 (2)非局限性。一個神經(jīng)網(wǎng)絡(luò)通常由多個神經(jīng)元廣泛連接而成。一個系統(tǒng)的整體行為不僅取決于單個神經(jīng)元的特征,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯(lián)想記憶是非局限性的典型例子。 (3)非常定性 人工神

3、經(jīng)網(wǎng)絡(luò)具有自適應(yīng)、自組織、自學(xué)習(xí)能力。神經(jīng)網(wǎng)絡(luò)不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統(tǒng)本身也在不斷變化。經(jīng)常采用迭代過程描寫動力系統(tǒng)的演化過程。 (4)非凸性 一個系統(tǒng)的演化方向,在一定條件下將取決于某個特定的狀態(tài)函數(shù)。例如能量函數(shù),它的極值相應(yīng)于系統(tǒng)比較穩(wěn)定的狀態(tài)。非凸性是指這種函數(shù)有多個極值,故系統(tǒng)具有多個較穩(wěn)定的平衡態(tài),這將導(dǎo)致系統(tǒng)演化的多樣性。 人工神經(jīng)網(wǎng)絡(luò)中,神經(jīng)元處理單元可表示不同的對象,例如特征、字母、概念,或者一些有意義的抽象模式。網(wǎng)絡(luò)中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數(shù)據(jù);輸出單元實現(xiàn)系統(tǒng)處理結(jié)果的輸出

4、;隱單元是處在輸入和輸出單元之間,不能由系統(tǒng)外部觀察的單元。神經(jīng)元間的連接權(quán)值反映了單元間的連接強度,信息的表示和處理體現(xiàn)在網(wǎng)絡(luò)處理單元的連接關(guān)系中。人工神經(jīng)網(wǎng)絡(luò)是一種非程序化、適應(yīng)性、大腦風(fēng)格的信息處理 ,其本質(zhì)是通過網(wǎng)絡(luò)的變換和動力學(xué)行為得到一種并行分布式的信息處理功能,并在不同程度和層次上模仿人腦神經(jīng)系統(tǒng)的信息處理功能。它是涉及神經(jīng)科學(xué)、思維科學(xué)、人工智能、計算機科學(xué)等多個領(lǐng)域的交叉學(xué)科。 人工神經(jīng)網(wǎng)絡(luò)就是模擬人思維的第二種方式。這是一個非線性動力學(xué)系統(tǒng),其特色在于信息的分布式存儲和并行協(xié)同處理。雖然單個神經(jīng)元的結(jié)構(gòu)極其簡單,功能有限,但大量神經(jīng)元構(gòu)成的網(wǎng)絡(luò)系統(tǒng)所能實現(xiàn)的行為卻是極其豐富

5、多彩的。人工神經(jīng)網(wǎng)絡(luò)的研究,可以追溯到1957年Rosenblatt提出的感知器(Perceptron)模型 。它幾乎與人工智能AI(Artificial Intelligence)同時起步,但30余年來卻并未取得人工智能那樣巨大的成功,中間經(jīng)歷了一段長時間的蕭條。直到80年代,獲得了關(guān)于 人工神經(jīng)網(wǎng)絡(luò)切實可行的算法,以及以Von Neumann體系為依托的傳統(tǒng)算法在知識處理方面日益顯露出其力不從心后,人們才重新對人工神經(jīng)網(wǎng)絡(luò)發(fā)生了興趣,導(dǎo)致神經(jīng)網(wǎng)絡(luò)的復(fù)興。目前在神經(jīng)網(wǎng)絡(luò)研究方法上已形成多個流派,最富有成果的研究工作包括:多層網(wǎng)絡(luò) BP算法,Hopfield網(wǎng)絡(luò)模型,自適應(yīng)共振理 論,自組織特征映射理論等目前,對人工神經(jīng)網(wǎng)絡(luò)及相關(guān)算法的研究正如火如荼地展開。某些算法已經(jīng)應(yīng)用到實際生產(chǎn)中。人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域正在不斷擴大,不僅可以廣泛應(yīng)用于工程,科學(xué)和數(shù)學(xué)領(lǐng)域,也可廣泛應(yīng)用于醫(yī)學(xué),商業(yè),金融甚至于文學(xué)領(lǐng)域。隨著各種神經(jīng)網(wǎng)絡(luò)模型的創(chuàng)建和各種硬件,網(wǎng)絡(luò)設(shè)備制造工藝的提高,人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用將會越來越廣泛。參考文獻: 1 朱大奇 史慧等 人工神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用 科學(xué)出版社 200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論