版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、概率論與數(shù)理統(tǒng)計 復旦大學習題 一1略.見教材習題參考答案.2.設A,B,C為三個事件,試用A,B,C的運算關系式表示下列事件:(1) A發(fā)生,B,C都不發(fā)生; (2) A與B發(fā)生,C不發(fā)生;(3) A,B,C都發(fā)生; (4) A,B,C至少有一個發(fā)生;(5) A,B,C都不發(fā)生; (6) A,B,C不都發(fā)生;(7) A,B,C至多有2個發(fā)生; (8) A,B,C至少有2個發(fā)生.【解】(1) A (2) AB (3) ABC(4) ABC=CBABCACABABC=(5) = (6) (7) BCACABCAB=(8) ABBCCA=ABACBCABC3.略.見教材習題參考答案4.設A,B為隨
2、機事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】 P()=1-P(AB)=1-P(A)-P(A-B)=1-0.7-0.3=0.65.設A,B是兩事件,且P(A)=0.6,P(B)=0.7,求:(1) 在什么條件下P(AB)取到最大值?(2) 在什么條件下P(AB)取到最小值?【解】(1) 當AB=A時,P(AB)取到最大值為0.6.(2) 當AB=時,P(AB)取到最小值為0.3.6.設A,B,C為三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件發(fā)生的概率.【解】 P(ABC)=P(A)+P(B
3、)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=+-=7.從52張撲克牌中任意取出13張,問有5張黑桃,3張紅心,3張方塊,2張梅花的概率是多少?【解】 p=8.對一個五人學習小組考慮生日問題:(1) 求五個人的生日都在星期日的概率; (2) 求五個人的生日都不在星期日的概率;(3) 求五個人的生日不都在星期日的概率.【解】(1) 設A1=五個人的生日都在星期日,基本事件總數(shù)為75,有利事件僅1個,故 P(A1)=()5 (亦可用獨立性求解,下同)(2) 設A2=五個人生日都不在星期日,有利事件數(shù)為65,故P(A2)=()5(3) 設A3=五個人的生日不都在星期日P(A3)=1
4、-P(A1)=1-()59.略.見教材習題參考答案.10.一批產品共N件,其中M件正品.從中隨機地取出n件(n<N).試求其中恰有m件(mM)正品(記為A)的概率.如果:(1) n件是同時取出的;(2) n件是無放回逐件取出的;(3) n件是有放回逐件取出的.【解】(1) P(A)=(2) 由于是無放回逐件取出,可用排列法計算.樣本點總數(shù)有種,n次抽取中有m次為正品的組合數(shù)為種.對于固定的一種正品與次品的抽取次序,從M件正品中取m件的排列數(shù)有種,從N-M件次品中取n-m件的排列數(shù)為種,故P(A)=由于無放回逐漸抽取也可以看成一次取出,故上述概率也可寫成P(A)=可以看出,用第二種方法簡便
5、得多.(3) 由于是有放回的抽取,每次都有N種取法,故所有可能的取法總數(shù)為Nn種,n次抽取中有m次為正品的組合數(shù)為種,對于固定的一種正、次品的抽取次序,m次取得正品,都有M種取法,共有Mm種取法,n-m次取得次品,每次都有N-M種取法,共有(N-M)n-m種取法,故此題也可用貝努里概型,共做了n重貝努里試驗,每次取得正品的概率為,則取得m件正品的概率為11.略.見教材習題參考答案.12.【解】設A=發(fā)生一個部件強度太弱13.一個袋內裝有大小相同的7個球,其中4個是白球,3個是黑球,從中一次抽取3個,計算至少有兩個是白球的概率.【解】 設Ai=恰有i個白球(i=2,3),顯然A2與A3互斥.故
6、14.(1) 兩粒都發(fā)芽的概率;(2) 至少有一粒發(fā)芽的概率;(3) 恰有一粒發(fā)芽的概率.【解】設Ai=第i批種子中的一粒發(fā)芽,(i=1,2)(1) (2) (3) 15.擲一枚均勻硬幣直到出現(xiàn)3次正面才停止.(1) 問正好在第6次停止的概率;(2) 問正好在第6次停止的情況下,第5次也是出現(xiàn)正面的概率.【解】(1) (2) 16.【解】 設Ai=甲進i球,i=0,1,2,3,Bi=乙進i球,i=0,1,2,3,則 =0.3207617從5雙不同的鞋子中任取4只,求這4只鞋子中至少有兩只鞋子配成一雙的概率.【解】 18.某地某天下雪的概率為0.3,下雨的概率為0.5,既下雪又下雨的概率為0.1
7、,求:(1) 在下雨條件下下雪的概率;(2) 這天下雨或下雪的概率.【解】 設A=下雨,B=下雪.(1) (2) 19.已知一個家庭有3個小孩,且其中一個為女孩,求至少有一個男孩的概率(小孩為男為女是等可能的).【解】 設A=其中一個為女孩,B=至少有一個男孩,樣本點總數(shù)為23=8,故或在縮減樣本空間中求,此時樣本點總數(shù)為7.20.已知5%的男人和0.25%的女人是色盲,現(xiàn)隨機地挑選一人,此人恰為色盲,問此人是男人的概率(假設男人和女人各占人數(shù)的一半).【解】 設A=此人是男人,B=此人是色盲,則由貝葉斯公式 21.兩人約定上午9001000在公園會面,求一人要等另一人半小時以上的概率. 題2
8、1圖 題22圖【解】設兩人到達時刻為x,y,則0x,y60.事件“一人要等另一人半小時以上”等價于|x-y|>30.如圖陰影部分所示.22.從(0,1)中隨機地取兩個數(shù),求:(1) 兩個數(shù)之和小于的概率;(2) 兩個數(shù)之積小于的概率.【解】 設兩數(shù)為x,y,則0<x,y<1.(1) x+y<. (2) xy=<. 23.設P()=0.3,P(B)=0.4,P(A)=0.5,求P(BA)【解】 24.在一個盒中裝有15個乒乓球,其中有9個新球,在第一次比賽中任意取出3個球,比賽后放回原盒中;第二次比賽同樣任意取出3個球,求第二次取出的3個球均為新球的概率.【解】 設
9、Ai=第一次取出的3個球中有i個新球,i=0,1,2,3.B=第二次取出的3球均為新球由全概率公式,有 25. 按以往概率論考試結果分析,努力學習的學生有90%的可能考試及格,不努力學習的學生有90%的可能考試不及格.據(jù)調查,學生中有80%的人是努力學習的,試問:(1)考試及格的學生有多大可能是不努力學習的人?(2)考試不及格的學生有多大可能是努力學習的人?【解】設A=被調查學生是努力學習的,則=被調查學生是不努力學習的.由題意知P(A)=0.8,P()=0.2,又設B=被調查學生考試及格.由題意知P(B|A)=0.9,P(|)=0.9,故由貝葉斯公式知(1) 即考試及格的學生中不努力學習的學
10、生僅占2.702%(2) 即考試不及格的學生中努力學習的學生占30.77%.26. 將兩信息分別編碼為A和B傳遞出來,接收站收到時,A被誤收作B的概率為0.02,而B被誤收作AA與B傳遞的頻繁程度為21.若接收站收到的信息是A,試問原發(fā)信息是A的概率是多少?【解】 設A=原發(fā)信息是A,則=原發(fā)信息是BC=收到信息是A,則=收到信息是B由貝葉斯公式,得 27.在已有兩個球的箱子中再放一白球,然后任意取出一球,若發(fā)現(xiàn)這球為白球,試求箱子中原有一白球的概率(箱中原有什么球是等可能的顏色只有黑、白兩種)【解】設Ai=箱中原有i個白球(i=0,1,2),由題設條件知P(Ai)=,i=0,1,2.又設B=
11、抽出一球為白球.由貝葉斯公式知28.某工廠生產的產品中96%是合格品,檢查產品時,一個合格品被誤認為是次品的概率為0.02,一個次品被誤認為是合格品的概率為0.05,求在被檢查后認為是合格品產品確是合格品的概率.【解】 設A=產品確為合格品,B=產品被認為是合格品由貝葉斯公式得 29.某保險公司把被保險人分為三類:“謹慎的”,“一般的”,“冒失的”“謹慎的”被保險人占20%,“一般的”占50%,“冒失的”占30%,現(xiàn)知某被保險人在一年內出了事故,則他是“謹慎的”的概率是多少?【解】 設A=該客戶是“謹慎的”,B=該客戶是“一般的”,C=該客戶是“冒失的”,D=該客戶在一年內出了事故則由貝葉斯公
12、式得 30.加工某一零件需要經(jīng)過四道工序,設第一、二、三、四道工序的次品率分別為0.02,0.03,0.05,0.03,假定各道工序是相互獨立的,求加工出來的零件的次品率.【解】設Ai=第i道工序出次品(i=1,2,3,4). 31.設每次射擊的命中率為0.2,問至少必須進行多少次獨立射擊才能使至少擊中一次的概率不小于0.9?【解】設必須進行n次獨立射擊.即為 故 n11至少必須進行11次獨立射擊.32.證明:若P(AB)=P(A),則A,B相互獨立.【證】 即亦即 因此 故A與B相互獨立.33.三人獨立地破譯一個密碼,他們能破譯的概率分別為,求將此密碼破譯出的概率.【解】 設Ai=第i人能破
13、譯(i=1,2,3),則 34.甲、乙、丙三人獨立地向同一飛機射擊,設擊中的概率分別是0.4,0.5,0.7,若只有一人擊中,則飛機被擊落的概率為0.2;若有兩人擊中,則飛機被擊落的概率為0.6;若三人都擊中,則飛機一定被擊落,求:飛機被擊落的概率.【解】設A=飛機被擊落,Bi=恰有i人擊中飛機,i=0,1,2,3由全概率公式,得=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×
14、;0.7)0.6+0.4×0.5×0.7=0.45835.已知某種疾病患者的痊愈率為25%,為試驗一種新藥是否有效,把它給10個病人服用,且規(guī)定若10個病人中至少有四人治好則認為這種藥有效,反之則認為無效,求:(1) 雖然新藥有效,且把治愈率提高到35%,但通過試驗被否定的概率.(2) 新藥完全無效,但通過試驗被認為有效的概率.【解】(1) (2) 36.一架升降機開始時有6位乘客,并等可能地停于十層樓的每一層.試求下列事件的概率:(1) A=“某指定的一層有兩位乘客離開”;(2) B=“沒有兩位及兩位以上的乘客在同一層離開”;(3) C=“恰有兩位乘客在同一層離開”;(4
15、) D=“至少有兩位乘客在同一層離開”.【解】 由于每位乘客均可在10層樓中的任一層離開,故所有可能結果為106種.(1) ,也可由6重貝努里模型:(2) 6個人在十層中任意六層離開,故(3) 由于沒有規(guī)定在哪一層離開,故可在十層中的任一層離開,有種可能結果,再從六人中選二人在該層離開,有種離開方式.其余4人中不能再有兩人同時離開的情況,因此可包含以下三種離開方式:4人中有3個人在同一層離開,另一人在其余8層中任一層離開,共有種可能結果;4人同時離開,有種可能結果;4個人都不在同一層離開,有種可能結果,故(4) D=.故37. n個朋友隨機地圍繞圓桌而坐,求下列事件的概率:(1) 甲、乙兩人坐
16、在一起,且乙坐在甲的左邊的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n個人并排坐在長桌的一邊,求上述事件的概率.【解】 (1) (2) (3) 38.將線段0,a任意折成三折,試求這三折線段能構成三角形的概率【解】 設這三段長分別為x,y,a-x-y.則基本事件集為由0<x<a,0<y<a,0<a-x-y<a所構成的圖形,有利事件集為由構成的圖形,即如圖陰影部分所示,故所求概率為.39. 某人有n把鑰匙,其中只有一把能開他的門.他逐個將它們去試開(抽樣是無放回的).證明試開k次(k=1,2,n)才能把門打開的概率與k無關.【證】 40.把一個表
17、面涂有顏色的立方體等分為一千個小立方體,在這些小立方體中,隨機地取出一個,試求它有i面涂有顏色的概率P(Ai)(i=0,1,2,3).【解】 設Ai=小立方體有i面涂有顏色,i=0,1,2,3. 在1千個小立方體中,只有位于原立方體的角上的小立方體是三面有色的,這樣的小立方體共有8個.只有位于原立方體的棱上(除去八個角外)的小立方體是兩面涂色的,這樣的小立方體共有12×8=96個.同理,原立方體的六個面上(除去棱)的小立方體是一面涂色的,共有8×8×6=384個.其余1000-(8+96+384)=512個內部的小立方體是無色的,故所求概率為,.41.對任意的隨機
18、事件A,B,C,試證P(AB)+P(AC)-P(BC)P(A).【證】 42.將3個球隨機地放入4個杯子中去,求杯中球的最大個數(shù)分別為1,2,3的概率.【解】 設=杯中球的最大個數(shù)為i,i=1,2,3.將3個球隨機放入4個杯子中,全部可能放法有43種,杯中球的最大個數(shù)為1時,每個杯中最多放一球,故而杯中球的最大個數(shù)為3,即三個球全放入一個杯中,故因此 或 43.將一枚均勻硬幣擲2n次,求出現(xiàn)正面次數(shù)多于反面次數(shù)的概率.【解】擲2n次硬幣,可能出現(xiàn):A=正面次數(shù)多于反面次數(shù),B=正面次數(shù)少于反面次數(shù),C=正面次數(shù)等于反面次數(shù),A,B,C兩兩互斥.可用對稱性來解決.由于硬幣是均勻的,故P(A)=P
19、(B).所以由2n重貝努里試驗中正面出現(xiàn)n次的概率為 故 44.擲n次均勻硬幣,求出現(xiàn)正面次數(shù)多于反面次數(shù)的概率.【解】設A=出現(xiàn)正面次數(shù)多于反面次數(shù),B=出現(xiàn)反面次數(shù)多于正面次數(shù),由對稱性知P(A)=P(B)(1) 當n為奇數(shù)時,正、反面次數(shù)不會相等.由P(A)+P(B)=1得P(A)=P(B)=0.5(2) 當n為偶數(shù)時,由上題知45.設甲擲均勻硬幣n+1次,乙擲n次,求甲擲出正面次數(shù)多于乙擲出正面次數(shù)的概率.【解】 令甲正=甲擲出的正面次數(shù),甲反=甲擲出的反面次數(shù).乙正=乙擲出的正面次數(shù),乙反=乙擲出的反面次數(shù).顯然有=(甲正乙正)=(n+1-甲反n-乙反)=(甲反1+乙反)=(甲反&g
20、t;乙反)由對稱性知P(甲正>乙正)=P(甲反>乙反)因此P(甲正>乙正)=46.證明“確定的原則”(Sure-thing):若P(A|C)P(B|C),P(A|)P(B|),則P(A)P(B).【證】由P(A|C)P(B|C),得即有 同理由 得 故 47.一列火車共有n節(jié)車廂,有k(kn)個旅客上火車并隨意地選擇車廂.求每一節(jié)車廂內至少有一個旅客的概率.【解】 設Ai=第i節(jié)車廂是空的,(i=1,n),則其中i1,i2,in-1是1,2,n中的任n-1個.顯然n節(jié)車廂全空的概率是零,于是 故所求概率為48.設隨機試驗中,某一事件A出現(xiàn)的概率為>0.試證明:不論>
21、;0如何小,只要不斷地獨立地重復做此試驗,則A遲早會出現(xiàn)的概率為1.【證】在前n次試驗中,A至少出現(xiàn)一次的概率為49.袋中裝有m只正品硬幣,n只次品硬幣(次品硬幣的兩面均印有國徽).在袋中任取一只,將它投擲r次,已知每次都得到國徽.試問這只硬幣是正品的概率是多少?【解】設A=投擲硬幣r次都得到國徽B=這只硬幣為正品由題知 則由貝葉斯公式知 50.巴拿赫(Banach)火柴盒問題:某數(shù)學家有甲、乙兩盒火柴,每盒有N根火柴,每次用火柴時他在兩盒中任取一盒并從中任取一根.試求他首次發(fā)現(xiàn)一盒空時另一盒恰有r根的概率是多少?第一次用完一盒火柴時(不是發(fā)現(xiàn)空)而另一盒恰有r根的概率又有多少?【解】以B1、
22、B2記火柴取自不同兩盒的事件,則有.(1)發(fā)現(xiàn)一盒已空,另一盒恰剩r根,說明已取了2n-r次,設n次取自B1盒(已空),n-r次取自B2盒,第2n-r+1次拿起B(yǎng)1,發(fā)現(xiàn)已空。把取2n-r次火柴視作2n-r重貝努里試驗,則所求概率為式中2反映B1與B2盒的對稱性(即也可以是B2盒先取空).(2) 前2n-r-1次取火柴,有n-1次取自B1盒,n-r次取自B2盒,第2n-r次取自B1盒,故概率為51.求n重貝努里試驗中A出現(xiàn)奇數(shù)次的概率.【解】 設在一次試驗中A出現(xiàn)的概率為p.則由以上兩式相減得所求概率為若要求在n重貝努里試驗中A出現(xiàn)偶數(shù)次的概率,則只要將兩式相加,即得.52.設A,B是任意兩個
23、隨機事件,求P(+B)(A+B)(+)(A+)的值.【解】因為(AB)()=AB(B)(A)=AB所求 故所求值為0.53.設兩兩相互獨立的三事件,A,B和C滿足條件:ABC=F,P(A)=P(B)=P(C)< 1/2,且P(ABC)=9/16,求P(A).【解】由 故或,按題設P(A)<,故P(A)=.54.設兩個相互獨立的事件A和B都不發(fā)生的概率為1/9,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相等,求P(A).【解】 故 故 由A,B的獨立性,及、式有 故 故 或(舍去)即P(A)=.55.隨機地向半圓0<y< (a為正常數(shù))內擲一點,點落在半圓內任何區(qū)域的概率
24、與區(qū)域的面積成正比,則原點和該點的連線與x軸的夾角小于/4的概率為多少?【解】利用幾何概率來求,圖中半圓面積為a2.陰影部分面積為故所求概率為56.設10件產品中有4件不合格品,從中任取兩件,已知所取兩件產品中有一件是不合格品,求另一件也是不合格品的概率.【解】 設A=兩件中至少有一件是不合格品,B=另一件也是不合格品57.設有來自三個地區(qū)的各10名、15名和25名考生的報名表,其中女生的報名表分別為3份、7份和5份.隨機地取一個地區(qū)的報名表,從中先后抽出兩份.(1) 求先抽到的一份是女生表的概率p;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q. 【解】設Ai=報名表是取自
25、第i區(qū)的考生,i=1,2,3.Bj=第j次取出的是女生表,j=1,2.則 (1) (2) 而 故 58. 設A,B為隨機事件,且P(B)>0,P(A|B)=1,試比較P(AB)與P(A)的大小. (2006研考)解:因為 所以 .習題二1.一袋中有5只乒乓球,編號為1,2,3,4,5,在其中同時取3只,以X表示取出的3只球中的最大號碼,寫出隨機變量X的分布律.【解】故所求分布律為X345P0.10.30.62.設在15只同類型零件中有2只為次品,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個數(shù),求:(1) X的分布律;(2) X的分布函數(shù)并作圖;(3).【解】故X的分布律
26、為X012P(2) 當x<0時,F(xiàn)(x)=P(Xx)=0當0x<1時,F(xiàn)(x)=P(Xx)=P(X=0)= 當1x<2時,F(xiàn)(x)=P(Xx)=P(X=0)+P(X=1)=當x2時,F(xiàn)(x)=P(Xx)=1故X的分布函數(shù)(3) 3.射手向目標獨立地進行了3次射擊,每次擊中率為0.8,求3次射擊中擊中目標的次數(shù)的分布律及分布函數(shù),并求3次射擊中至少擊中2次的概率.【解】設X表示擊中目標的次數(shù).則X=0,1,2,3.故X的分布律為X0123P0.0080.0960.3840.512分布函數(shù)4.(1) 設隨機變量X的分布律為PX=k=,其中k=0,1,2,0為常數(shù),試確定常數(shù)a.(
27、2) 設隨機變量X的分布律為PX=k=a/N, k=1,2,N,試確定常數(shù)a.【解】(1) 由分布律的性質知故 (2) 由分布律的性質知即 .5.甲、乙兩人投籃,投中的概率分別為0.6,0.7,今各投3次,求:(1) 兩人投中次數(shù)相等的概率;(2) 甲比乙投中次數(shù)多的概率.【解】分別令X、Y表示甲、乙投中次數(shù),則Xb(3,0.6),Yb(3,0.7)(1) + (2) =0.2436.設某機場每天有200架飛機在此降落,任一飛機在某一時刻降落的概率設為0.02,且設各飛機降落是相互獨立的.試問該機場需配備多少條跑道,才能保證某一時刻飛機需立即降落而沒有空閑跑道的概率小于0.01(每條跑道只能允
28、許一架飛機降落)?【解】設X為某一時刻需立即降落的飛機數(shù),則Xb(200,0.02),設機場需配備N條跑道,則有即 利用泊松近似查表得N9.故機場至少應配備9條跑道.7.有一繁忙的汽車站,每天有大量汽車通過,設每輛車在一天的某時段出事故的概率為0.0001,在某天的該時段內有1000輛汽車通過,問出事故的次數(shù)不小于2的概率是多少(利用泊松定理)?【解】設X表示出事故的次數(shù),則Xb(1000,0.0001) 8.已知在五重貝努里試驗中成功的次數(shù)X滿足PX=1=PX=2,求概率PX=4.【解】設在每次試驗中成功的概率為p,則故 所以 .9.設事件A在每一次試驗中發(fā)生的概率為0.3,當A發(fā)生不少于3
29、次時,指示燈發(fā)出信號,(1) 進行了5次獨立試驗,試求指示燈發(fā)出信號的概率;(2) 進行了7次獨立試驗,試求指示燈發(fā)出信號的概率.【解】(1) 設X表示5次獨立試驗中A發(fā)生的次數(shù),則X6(5,0.3)(2) 令Y表示7次獨立試驗中A發(fā)生的次數(shù),則Yb(7,0.3)10.某公安局在長度為t的時間間隔內收到的緊急呼救的次數(shù)X服從參數(shù)為(1/2)t的泊松分布,而與時間間隔起點無關(時間以小時計).(1) 求某一天中午12時至下午3時沒收到呼救的概率;(2) 求某一天中午12時至下午5時至少收到1次呼救的概率.【解】(1) (2) 11.設PX=k=, k=0,1,2PY=m=, m=0,1,2,3,
30、4分別為隨機變量X,Y的概率分布,如果已知PX1=,試求PY1.【解】因為,故.而 故得 即 從而 12.某教科書出版了2000冊,因裝訂等原因造成錯誤的概率為0.001,試求在這2000冊書中恰有5冊錯誤的概率.【解】令X為2000冊書中錯誤的冊數(shù),則Xb(2000,0.001).利用泊松近似計算,得 13.進行某種試驗,成功的概率為,失敗的概率為.以X表示試驗首次成功所需試驗的次數(shù),試寫出X的分布律,并計算X取偶數(shù)的概率.【解】1月1日須交12元保險費,而在死亡時家屬可從保險公司領取2000元賠償金.求:(1) 保險公司虧本的概率;(2) 保險公司獲利分別不少于10000元、20000元的
31、概率.【解】以“年”為單位來考慮.(1) 在1月1日,保險公司總收入為2500×12=30000元.設1年中死亡人數(shù)為X,則Xb(2500,0.002),則所求概率為由于n很大,p很小,=np=5,故用泊松近似,有(2) P(保險公司獲利不少于10000) 即保險公司獲利不少于10000元的概率在98%以上P(保險公司獲利不少于20000) 即保險公司獲利不少于20000元的概率約為62%15.已知隨機變量X的密度函數(shù)為f(x)=Ae-|x|, -<x<+,求:(1)A值;(2)P0<X<1; (3) F(x).【解】(1) 由得故 .(2) (3) 當x&l
32、t;0時,當x0時, 故 16.設某種儀器內裝有三只同樣的電子管,電子管使用壽命X的密度函數(shù)為f(x)=求:(1) 在開始150小時內沒有電子管損壞的概率;(2) 在這段時間內有一只電子管損壞的概率;(3) F(x).【解】(1) (2) (3) 當x<100時F(x)=0當x100時 故 17.在區(qū)間0,a上任意投擲一個質點,以X表示這質點的坐標,設這質點落在0,a中任意小區(qū)間內的概率與這小區(qū)間長度成正比例,試求X的分布函數(shù).【解】 由題意知X0,a,密度函數(shù)為故當x<0時F(x)=0當0xa時當x>a時,F(xiàn)(x)=1即分布函數(shù)18.設隨機變量X在2,5上服從均勻分布.現(xiàn)對
33、X進行三次獨立觀測,求至少有兩次的觀測值大于3的概率.【解】XU2,5,即故所求概率為19.設顧客在某銀行的窗口等待服務的時間X(以分鐘計)服從指數(shù)分布.某顧客在窗口等待服務,若超過10分鐘他就離開.他一個月要到銀行5次,以Y表示一個月內他未等到服務而離開窗口的次數(shù),試寫出Y的分布律,并求PY1.【解】依題意知,即其密度函數(shù)為該顧客未等到服務而離開的概率為,即其分布律為20.某人乘汽車去火車站乘火車,有兩條路可走.第一條路程較短但交通擁擠,所需時間X服從N(40,102);第二條路程較長,但阻塞少,所需時間X服從N(50,42).(1) 若動身時離火車開車只有1小時,問應走哪條路能乘上火車的把
34、握大些?(2) 又若離火車開車時間只有45分鐘,問應走哪條路趕上火車把握大些?【解】(1) 若走第一條路,XN(40,102),則若走第二條路,XN(50,42),則+故走第二條路乘上火車的把握大些.(2) 若XN(40,102),則若XN(50,42),則 故走第一條路乘上火車的把握大些.21.設XN(3,22),(1) 求P2<X5,P-4<X10,PX2,PX3;(2) 確定c使PXc=PXc.【解】(1) (2) c=322.由某機器生產的螺栓長度(cm)XN(10.05,0.062),規(guī)定長度在10.05±0.12內為合格品,求一螺栓為不合格品的概率.【解】 2
35、3.一工廠生產的電子管壽命X(小時)服從正態(tài)分布N(160,2),若要求P120X2000.8,允許最大不超過多少?【解】 故 24.設隨機變量X分布函數(shù)為F(x)=(1) 求常數(shù)A,B;(2) 求PX2,PX3;(3) 求分布密度f(x).【解】(1)由得(2) (3) 25.設隨機變量X的概率密度為f(x)=求X的分布函數(shù)F(x),并畫出f(x)及F(x).【解】當x<0時F(x)=0當0x<1時 當1x<2時 當x2時故 26.設隨機變量X的密度函數(shù)為(1) f(x)=ae-l|x|,>0;(2) f(x)=試確定常數(shù)a,b,并求其分布函數(shù)F(x).【解】(1)
36、由知故 即密度函數(shù)為 當x0時當x>0時 故其分布函數(shù)(2) 由得 b=1即X的密度函數(shù)為當x0時F(x)=0當0<x<1時 當1x<2時 當x2時F(x)=1故其分布函數(shù)為27.求標準正態(tài)分布的上分位點,(1)=0.01,求;(2)=0.003,求,.【解】(1) 即 即 故 (2) 由得即 查表得 由得即 查表得 28.設隨機變量X的分布律為X-2 -1 0 1 3Pk1/5 1/6 1/5 1/15 11/30求Y=X2的分布律.【解】Y可取的值為0,1,4,9故Y的分布律為Y0 1 4 9Pk1/5 7/30 1/5 11/3029.設PX=k=()k, k=1
37、,2,令 求隨機變量X的函數(shù)Y的分布律.【解】 30.設XN(0,1).(1) 求Y=eX的概率密度;(2) 求Y=2X2+1的概率密度;(3) 求Y=X的概率密度.【解】(1) 當y0時,當y>0時, 故 (2)當y1時當y>1時 故 (3) 當y0時當y>0時 故31.設隨機變量XU(0,1),試求:(1) Y=eX的分布函數(shù)及密度函數(shù);(2) Z=-2lnX的分布函數(shù)及密度函數(shù).【解】(1) 故 當時當1<y<e時當ye時即分布函數(shù)故Y的密度函數(shù)為(2) 由P(0<X<1)=1知當z0時,當z>0時, 即分布函數(shù)故Z的密度函數(shù)為32.設隨機
38、變量X的密度函數(shù)為f(x)=試求Y=sinX的密度函數(shù).【解】當y0時,當0<y<1時, 當y1時,故Y的密度函數(shù)為33.設隨機變量X的分布函數(shù)如下:試填上(1),(2),(3)項.【解】由知填1。由右連續(xù)性知,故為0。從而亦為0。即34.同時擲兩枚骰子,直到一枚骰子出現(xiàn)6點為止,求拋擲次數(shù)X的分布律.【解】設Ai=第i枚骰子出現(xiàn)6點。(i=1,2),P(Ai)=.且A1與A2相互獨立。再設C=每次拋擲出現(xiàn)6點。則 故拋擲次數(shù)X服從參數(shù)為的幾何分布?!窘狻苛頧為0出現(xiàn)的次數(shù),設數(shù)字序列中要包含n個數(shù)字,則Xb(n,0.1)即 得 n22即隨機數(shù)字序列至少要有22個數(shù)字。36.已知F
39、(x)=則F(x)是( )隨機變量的分布函數(shù).(A) 連續(xù)型; (B)離散型;(C) 非連續(xù)亦非離散型.【解】因為F(x)在(-,+)上單調不減右連續(xù),且,所以F(x)是一個分布函數(shù)。但是F(x)在x=0處不連續(xù),也不是階梯狀曲線,故F(x)是非連續(xù)亦非離散型隨機變量的分布函數(shù)。選(C)37.設在區(qū)間a,b上,隨機變量X的密度函數(shù)為f(x)=sinx,而在a,b外,f(x)=0,則區(qū)間 a,b等于( )(A) 0,/2; (B) 0,;(C) -/2,0; (D) 0,.【解】在上sinx0,且.故f(x)是密度函數(shù)。在上.故f(x)不是密度函數(shù)。在上,故f(x)不是密度函數(shù)。在上,當時,si
40、nx<0,f(x)也不是密度函數(shù)。故選(A)。38.設隨機變量XN(0,2),問:當取何值時,X落入?yún)^(qū)間(1,3)的概率最大?【解】因為 利用微積分中求極值的方法,有 得,則 又 故為極大值點且惟一。故當時X落入?yún)^(qū)間(1,3)的概率最大。39.設在一段時間內進入某一商店的顧客人數(shù)X服從泊松分布P(),每個顧客購買某種物品的概率為p,并且各個顧客是否購買該種物品相互獨立,求進入商店的顧客購買這種物品的人數(shù)Y的分布律.【解】設購買某種物品的人數(shù)為Y,在進入商店的人數(shù)X=m的條件下,Yb(m,p),即由全概率公式有 此題說明:進入商店的人數(shù)服從參數(shù)為的泊松分布,購買這種物品的人數(shù)仍服從泊松分布
41、,但參數(shù)改變?yōu)閜.40.設隨機變量X服從參數(shù)為2的指數(shù)分布.證明:Y=1-e-2X在區(qū)間(0,1)上服從均勻分布. 【證】X的密度函數(shù)為由于P(X>0)=1,故0<1-e-2X<1,即P(0<Y<1)=1當y0時,F(xiàn)Y(y)=0當y1時,F(xiàn)Y(y)=1當0<y<1時,即Y的密度函數(shù)為即YU(0,1)41.設隨機變量X的密度函數(shù)為f(x)=若k使得PXk=2/3,求k的取值范圍. (2000研考)【解】由P(Xk)=知P(X<k)=若k<0,P(X<k)=0若0k1,P(X<k)= 當k=1時P(X<k)=若1k3時P(X&
42、lt;k)=若3<k6,則P(X<k)=若k>6,則P(X<k)=1故只有當1k3時滿足P(Xk)=.42.設隨機變量X的分布函數(shù)為F(x)=求X的概率分布. (1991研考)【解】由離散型隨機變量X分布律與分布函數(shù)之間的關系,可知X的概率分布為X-113P0.40.40.243.設三次獨立試驗中,事件A出現(xiàn)的概率相等.若已知A至少出現(xiàn)一次的概率為19/27,求A在一次試驗中出現(xiàn)的概率.【解】令X為三次獨立試驗中A出現(xiàn)的次數(shù),若設P(A)=p,則Xb(3,p)由P(X1)=知P(X=0)=(1-p)3=故p=44.若隨機變量X在(1,6)上服從均勻分布,則方程y2+Xy+1=0有實根的概率是多少? 【解】45.若隨機變量XN(2,2),且P2<X<4=0.3,則PX<0= . 【解】故 因此 n(n2)臺儀器(假設各臺儀器的生產過程相互獨立).求(1) 全部能出廠的概率;(2) 其中恰好有兩臺不能出廠的概率;(3)其中至少有兩臺不能出廠的概率. 【解】設A=需進一步調試,B=儀器能出廠,則=能直接出廠,AB=經(jīng)調試后能出廠由題意知B=AB,且令X為新生產的n臺儀器中能出廠的臺數(shù),則X6(n,0.94),故 47.某地抽樣調查結果表明,考生的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城鄉(xiāng)實體地域劃分與土地利用規(guī)劃合同3篇
- 2025年度體育場館周邊臨時停車位租賃管理協(xié)議3篇
- 2025年度文化創(chuàng)意產業(yè)出借咨詢及合作開發(fā)合同4篇
- 2025年度汽車零部件OEM貼牌生產協(xié)議2篇
- 2025年度特色民宿租賃服務合同范本4篇
- 《電池技術教程》課件
- 2025年度租賃汽車保險理賠服務合同模板4篇
- 2025年物業(yè)管理員考試輔導教材基本知識問答合同3篇
- 2025年湖南懷化信合勞務有限公司招聘筆試參考題庫含答案解析
- 2025年浙江湖州建欣商貿有限公司招聘筆試參考題庫含答案解析
- 焊錫膏技術培訓教材
- 函授本科《小學教育》畢業(yè)論文范文
- 高考高中英語單詞詞根詞綴大全
- 江蘇省泰州市姜堰區(qū)2023年七年級下學期數(shù)學期末復習試卷【含答案】
- 藥用輔料聚乙二醇400特性、用法用量
- 《中小學機器人教育研究(論文)11000字》
- GB/T 22085.1-2008電子束及激光焊接接頭缺欠質量分級指南第1部分:鋼
- 全過程人民民主學習心得體會
- 2023年上海期貨交易所招聘筆試題庫及答案解析
- 附圖1岑溪市行政區(qū)劃圖
- word企業(yè)管理封面-可編輯
評論
0/150
提交評論