導(dǎo)數(shù)基礎(chǔ)講義_第1頁
導(dǎo)數(shù)基礎(chǔ)講義_第2頁
導(dǎo)數(shù)基礎(chǔ)講義_第3頁
導(dǎo)數(shù)基礎(chǔ)講義_第4頁
導(dǎo)數(shù)基礎(chǔ)講義_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、二、考試要求了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)的概念。熟記基本導(dǎo)數(shù)公式(c,x (m為有理數(shù)),sin x, cos x, e, a,lnx, logx的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)要極值點(diǎn)兩側(cè)異號(hào)),會(huì)求一些實(shí)際問題(一般指單峰函數(shù))的最大值和最小值。三、復(fù)習(xí)目標(biāo) 1了解導(dǎo)數(shù)的概念,能利用導(dǎo)數(shù)定義求導(dǎo)數(shù)掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)函數(shù)

2、的概念了解曲線的切線的概念在了解瞬時(shí)速度的基礎(chǔ)上抽象出變化率的概念 2熟記基本導(dǎo)數(shù)公式(c,x (m為有理數(shù)),sin x, cos x, e, a, lnx, logx的導(dǎo)數(shù))。掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù),利能夠用導(dǎo)數(shù)求單調(diào)區(qū)間,求一個(gè)函數(shù)的最大(小)值的問題,掌握導(dǎo)數(shù)的基本應(yīng)用 3了解函數(shù)的和、差、積的求導(dǎo)法則的推導(dǎo),掌握兩個(gè)函數(shù)的商的求導(dǎo)法則。能正確運(yùn)用函數(shù)的和、差、積的求導(dǎo)法則及已有的導(dǎo)數(shù)公式求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。4了解復(fù)合函數(shù)的概念。會(huì)將一個(gè)函數(shù)的復(fù)合過程進(jìn)行分解或?qū)讉€(gè)函數(shù)進(jìn)行復(fù)合。掌握復(fù)合函數(shù)的求導(dǎo)法則,并會(huì)用法則解決一些簡(jiǎn)單問題。

3、四、雙基透視導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:1導(dǎo)數(shù)的常規(guī)問題:(1)刻畫函數(shù)(比初等方法精確細(xì)微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問題屬于較難類型。2關(guān)于函數(shù)特征,最值問題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。3導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個(gè)方向,應(yīng)引起注意。5瞬時(shí)速度在高一物理學(xué)習(xí)直線運(yùn)動(dòng)的速度時(shí),涉及過瞬時(shí)速度的一些知識(shí),物理教科書中首

4、先指出:運(yùn)動(dòng)物體經(jīng)過某一時(shí)刻(或某一位置)的速度叫做瞬時(shí)速度,然后從實(shí)際測(cè)量速度出發(fā),結(jié)合汽車速度儀的使用,對(duì)瞬時(shí)速度作了說明物理課上對(duì)瞬時(shí)速度只給出了直觀的描述,有了極限工具后,本節(jié)教材中是用物體在一段時(shí)間運(yùn)動(dòng)的平均速度的極限來定義瞬時(shí)速度6導(dǎo)數(shù)的定義7導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率由此,可以利用導(dǎo)數(shù)求曲線的切線方程具體求法分兩步:(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率;(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為特別地,如果曲線y=f(x)在點(diǎn)處的切線平行于y軸,這時(shí)導(dǎo)數(shù)不存,根據(jù)切線定義,可

5、得切線方程為8和(或差)的導(dǎo)數(shù)9積的導(dǎo)數(shù)10商的導(dǎo)數(shù)11. 導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系范例分析例1 在處可導(dǎo),則 例2已知f(x)在x=a處可導(dǎo),且f(a)=b,求下列極限:(1); (2)例3觀察,是否可判斷,可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),可導(dǎo)的偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。例4(1)求曲線在點(diǎn)(1,1)處的切線方程;(2)運(yùn)動(dòng)曲線方程為,求t=3時(shí)的速度。例5 求下列函數(shù)單調(diào)區(qū)間(1)(2)(3) (4)例6求證下列不等式(1) (2) (3) 例7利用導(dǎo)數(shù)求和:(1);(2)。例8求滿足條件的(1)使為上增函數(shù)(2)使為上(3)使為上例9(1)求證(2) 求證 例10 設(shè),求函數(shù)的單調(diào)區(qū)間.例1

6、1已知拋物線與直線y=x+2相交于A、B兩點(diǎn),過A、B兩點(diǎn)的切線分別為和。(1)求A、B兩點(diǎn)的坐標(biāo);(2)求直線與的夾角。例12(2001年天津卷)設(shè),是上的偶函數(shù)。(I)求的值;(II)證明在上是增函數(shù)。例13(2000年全國、天津卷)設(shè)函數(shù),其中。(I)解不等式;(II)證明:當(dāng)時(shí),函數(shù)在區(qū)間上是單調(diào)函數(shù)。例14 已知,函數(shù)設(shè),記曲線在點(diǎn)處的切線為。 ()求的方程;()設(shè)與軸的交點(diǎn)為,證明:若,則七、強(qiáng)化訓(xùn)練1設(shè)函數(shù)f(x)在處可導(dǎo),則等于 ( )A B C D2若,則等于 ( )A B C3 D23曲線上切線平行于x軸的點(diǎn)的坐標(biāo)是 ( )A(-1,2) B(1,-2) C(1,2) D(

7、-1,2)或(1,-2)4若函數(shù)f(x)的導(dǎo)數(shù)為f(x)=-sinx,則函數(shù)圖像在點(diǎn)(4,f(4)處的切線的傾斜角為( )A90° B0° C銳角 D鈍角5函數(shù)在0,3上的最大值、最小值分別是 ( )A5,15B5,4C4,15D5,166一直線運(yùn)動(dòng)的物體,從時(shí)間t到t+t時(shí),物體的位移為s,那么為( )A從時(shí)間t到t+t時(shí),物體的平均速度B時(shí)間t時(shí)該物體的瞬時(shí)速度C當(dāng)時(shí)間為t 時(shí)該物體的速度D從時(shí)間t到t+t時(shí)位移的平均變化率7關(guān)于函數(shù),下列說法不正確的是 ( )A在區(qū)間(,0)內(nèi),為增函數(shù)B在區(qū)間(0,2)內(nèi),為減函數(shù)C在區(qū)間(2,)內(nèi),為增函數(shù)D在區(qū)間(,0)內(nèi),為增

8、函數(shù)8對(duì)任意x,有,f(1)=-1,則此函數(shù)為 ( )A B C D9函數(shù)y=2x3-3x2-12x+5在0,3上的最大值與最小值分別是 ( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -1610設(shè)f(x)在處可導(dǎo),下列式子中與相等的是 ( )(1); (2); (3) (4)。A(1)(2) B(1)(3) C(2)(3) D(1)(2)(3)(4)11(2003年普通高等學(xué)校招生全國統(tǒng)一考試(上海卷理工農(nóng)醫(yī)類16)f()是定義在區(qū)間c,c上的奇函數(shù),其圖象如圖所示:令g()=af()+b,則下 列關(guān)于函數(shù)g()的敘述正確的是( )A若a<0,則函數(shù)g()

9、的圖象關(guān)于原點(diǎn)對(duì)稱.B若a=1,2<b<0,則方程g()=0有大于2的實(shí)根.C若a0,b=2,則方程g()=0有兩個(gè)實(shí)根.D若a1,b<2,則方程g()=0有三個(gè)實(shí)根.12若函數(shù)f(x)在點(diǎn)處的導(dǎo)數(shù)存在,則它所對(duì)應(yīng)的曲線在點(diǎn)處的切線方程是13設(shè),則它與x軸交點(diǎn)處的切線的方程為_。14設(shè),則_。15垂直于直線2x-6y+1=0,且與曲線相切的直線的方程是_ 16已知曲線,則_。17y=x2ex的單調(diào)遞增區(qū)間是 18曲線在點(diǎn)處的切線方程為_。19P是拋物線上的點(diǎn),若過點(diǎn)P的切線方程與直線垂直,則過P點(diǎn)處的切線方程是_。 20在拋物線上依次取兩點(diǎn),它們的橫坐標(biāo)分別為,若拋

10、物線上過點(diǎn)P的切線與過這兩點(diǎn)的割線平行,則P點(diǎn)的坐標(biāo)為_。21曲線在點(diǎn)A處的切線的斜率為3,求該曲線在A點(diǎn)處的切線方程。22在拋物線上求一點(diǎn)P,使過點(diǎn)P的切線和直線3x-y+1=0的夾角為。23判斷函數(shù)在x=0處是否可導(dǎo)。24求經(jīng)過點(diǎn)(2,0)且與曲線相切的直線方程。25求曲線y=xcosx在處的切線方程。26已知函數(shù)f(x)=x2+ax+b,g(x)=x2+cx+d. 若f(2x+1)=4g(x),且f'x=g'(x),f(5)=30,求g(4).27已知曲線與。直線l與、都相切,求直線l的方程。28設(shè)f(x)=(x-1)(x-2)(x-100),求f(1)。29求曲線在點(diǎn)處的切線方程。30求證方程在區(qū)間內(nèi)有且僅有一個(gè)實(shí)根31 、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論