e7生清華大學(xué)矩陣論習(xí)題解答_第1頁(yè)
e7生清華大學(xué)矩陣論習(xí)題解答_第2頁(yè)
e7生清華大學(xué)矩陣論習(xí)題解答_第3頁(yè)
e7生清華大學(xué)矩陣論習(xí)題解答_第4頁(yè)
e7生清華大學(xué)矩陣論習(xí)題解答_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、習(xí)題 51. 證:由于lim A(k) = A lim= 0 ,再利用矩陣的性質(zhì)A(k )- Ak k ,A(k )-A(k )- AA所以有l(wèi)im= 0 ,即lim-=.A(k )A(k )AAk k 2. 證:因?yàn)?a k A(k )+ b k B) - (aA + bB)(k )(a k A(k )- aA) + (b k B- bB)(k )=a k A(k )- aA+b k B(k )- bB=a k A(k )- a k A + a k A - aA+b k B(k )- b k B + b k B - bB a k+ a k - a+ b k+ b k - b.A(k ) -

2、AB(k ) - BAB利用 lim,= 0 , 以及 lim a - a= 0 ,- A= 0- BA(k )B (k )limkk k k = 0 , a k, b k有界,知lim bk - bk (a+ b- (aA + bB)= 0limA(k )B(k )kkk 故有l(wèi)im(aA(k ) + bB(k) ) = aA + bB .kkk 3. 解:(1)由于A= 0.9 ,從而 A 是收斂矩陣.1= 5 , l = - 1 ,故r( A) = 5 1,(2)由于 A 的特征值為l12626故 A 的收斂矩陣.4. 解:由于 A 的特征值為l1 = 2a ,l2 = l3 = -a

3、于是r( A) = 2 a ,故 1 或- 1 a 1 時(shí), A 為收斂矩陣.當(dāng) r( A) r , 知矩陣冪級(jí)數(shù) 1 Ak 發(fā)散.k =1 k 2- 8 ,可求得B 的特征值為l = -3,l = 5 ,所以(2)設(shè)B = 1- 2112r(B) = 5.又因冪級(jí)數(shù) k xk 的收斂半徑k =0 6k6k +1akr = lim= lim= 6 k k + 1k 6kk ak +1即有 r (B) r ,故矩陣冪級(jí)數(shù) k Bk絕對(duì)收斂.k =0 6k27. 解:設(shè) A = 0.10.7 ,由于= 0.9 1 ,故矩陣冪級(jí)數(shù)收AkA0.30.6k =0= 2 47 .斂,且其和為(I - A)

4、-13 398. 證:因 A(2pjI ) = (2pjI ) A ,所以有A 111A+2pjIA 2pjI= e e= e I + (2pjI ) + 2!(2pjI ) + 3! (2pjI ) + 41 (2pjI ) +L234e= e A 1 - 1 (2p )2 + 1 (2p )4 -L + j2p - 1 (2p )3 + 1 (2p )5 -LI2!4!3!5!= e Acos 2p + j sin 2p I = e A .又因 A(2pI ) = (2pI ) A ,所以有sin( A + 2pI ) = sin Acos(2pI ) + cos Asin( 2pI )1

5、111=sin AI - 2!(2pI ) + 4!(2pI ) -L + cos A2pI - 3! (2pI ) + 5! (2pI ) -L24351111=sin A1 - 2!(2p ) + 4!(2p ) -LI + cos A2p - 3! (2p ) + 5! (2p ) -L I2435=sin Acos 2p + cos Asin 2p = sin A9. 證:因?yàn)門(e A )T = I + A +A +A +L11232!3!= I + AT + 1 (AT )2 + 1 (AT )3 +L = e AT= e- A2!3!所以有e A (e A )T = e A e

6、AT= e0 = I .故e A 為正交陣.= e A- A310. 證:因?yàn)?e jA )H = (e jA )H于是有= e( jA)H = e- jA ,e jA (e jA )H = e jAe- jA= e0 = I故e jA 為酉陣.11. 解 :(1)f (l ) = lI - A= l3 - l2 ;(2)由 Cayley-Hamilton 定理知f (A) = A3 - A2 = 0 ,即 A3=A2從而有A4=A3A=A3=A2A5=A4A=A3=A2= I + A + 1 A2 + 1 A3 +L+An +L1故e A2!3!n!= I + A + A2 1 + 1 +L

7、+L1n! 2!3!= I + A + (e - 2)A2sin A = A - 1 A3 + 1 A5 +L+ (-1)k1A2k +1 +L()2k + 1 !3!5!2 111= A + A -+L + (-1)k) +L(2k + 1 !3!5!= A + (sin 1 -1)A2= (l + 1)(l -1)(l - 2) = 012. 解: lI - A求得 A 的特征值為l1 = -1, l2 = 1, l3 = 2 ,于是存在可逆陣4-111-134 1101= 1 0C = - 303, C -106 263-1使得C -1 AC = .再根據(jù)矩陣函數(shù)值公式為12= Cdia

8、g(e-1,e Ae1= Cdiag(e-t ,e2t )C -1etAet ,6e2t- e-t4e2t- 3et2= 1 3et + 3e-t3et - 3e-t006 sin A = Cdiag(sin(-1),sin 1,sin4sin 2 - 2sin 12sinsin 2= 1 0006sin 166 11111113. 解:(1)對(duì) A 求得 C,使得C -1 AC = = J ,所以有101001- 121ln A = C lC= -1213J ,其中 J= 21 , J = 11(2) A =1020112J2 于是有5101= ln 2 ,ln J =ln J002120l

9、n 2ln 2ln J = .ln A =1ln J2 2e-t - e-2te-t - e-2t14. 解:(1) e At = ;- 2e-t- 3+ 2e-2t- e-t+ 2e-5et6(2) e;A- 5- 52t 22(- 4t 24t(2t + 1= 1(3) e At;- 4t 28t(t5)- 5021(4) e At = 00e-2t.0115. 解:(1) cos A = I + (cos1 - 1)A, sin A = (s= I + (e - 1)A2e A(2) cos A = (cos1)I , sin A = (sin1)I , e A2(3) cos A =

10、I , sin A = A , e A2 = I .= eI ;16. 解:(1) A1000 = 5I - A +A - I 51000 ;4463e -1- 3e + 1ee + 3e + 1= - 3e - 3 ;(2) e A3e3e -1- 3ep3636- ; A(3)6arcsin= p642 33 +33=5 A .(4) (I + A)-1017. 解: d A(t ) = - sin tcos t- cos t- sin tdtd A-1 (t ) = - sin t- cos t ,dddtA(t ) = 0 ,A(t ) = 1. cos t- sin t dtdtt

11、2t( )18. 解: m = 2 時(shí)取 A t ,則= 0d dttt 4t 3 + t 2 4t 33t 2 + 2tA ( )A ( )t = 0t = 22 ,t 202t4t 32t 2 + 2t( ) d A t( ) = 2 A tdt02t可見(jiàn), d A2 (t ) 2A(t ) d A(t ).dtdt19. 解:兩邊對(duì) t 求導(dǎo)數(shù),得5cos 5t + 3cos t10 cos 5t - 2 cos t10 cos 5t + 2 cos t10 cos 5t - 2 cos t5cos 5t - cos t5cos 5t - cos tAcos At = 1 5cos 5t

12、 - cos t4 5cos 5t - cos t5cos 5t + 3cos t 令 t=0,并注意到cos 0 = I ,得7212A = 131 .12220. 解: 這是數(shù)量函數(shù)對(duì)矩陣變量的導(dǎo)數(shù). 設(shè) A = (a ),則ijmxn= tr(AT A).mn= s=1 t =1f (A) =A 2a 2stFf又因?yàn)? 2a (i = 1,2,L, m;j = 1,2,L, n),所以ijaijf= (2a )df= = 2 A.dA aijmnmnij21. 解:由于(X T AX )= 2AX ,再由YT X = y x + y x +L+ y x ,d1 122n ndX知 d

13、(Y T X )= Y ,而 dc = 0 ,因此 df (x) = 2 AX - Y .dxdXdX22. 證:(1)設(shè)B = (b )X = (x )= n,則 BXb,于是ik kj ,xijijmnnm k =1mm有nnntr(BX ) = b1k xk1 +L+ bjk xkj +L+ bmk xkmk =1k =1k =1tr (BX ) = b(i = 1,2,L, n; j = 1,2,L, m)xjiijb11Lbm1 ddX(tr(BX ) = MM = BTb1nbmn L注意到 BX 與(BX)T=XTBT 有相同的跡,所以(tr(X T BT )=(tr(BX )

14、= BTddXddX8(2)設(shè) A = (a)X = (x)f = tr(X T AX ),ijijnnnm則有nnk =1 1k k1a xMLa x1k km x11xn1 L= k =1X T= M ,MAXMnnx nk kmLx 1mnm axLa xnk k1 k =1k =1nnnnnn= xe1 aek xk1 +L + xej aek xkj +L+ xem aek xkmfe=1k =1e=1k =1e=1k =1 nna xkj ejekk =1xn= nn ek ek kj ejaa x x k =1 k =1e=1 ijijnn= a jk xkj + aek xej

15、k =1k =1 f= AX + A X = (A + A )X .df= TTdX xij nm證:設(shè) f = (X - u)T A(X - u),因?yàn)?AT = A ,所以f = X T AX - 2(Au)T X + uT Audf23.利用第 21 題的結(jié)果可得= 2AX - 2Au = 2A(X - u).dX24. 證:設(shè) A = (a展開,得),記a 的代數(shù)等子式為 A ,將 detA 按第i 行ijnnijijdet A = ai1 Ai1 +L+ aij Aij +L+ ain Ain ,f所以= A (i, j = 1,2,L, n),從而有ijaij9= (A )= (a

16、djA)T = (det A)A-1 )T = det A(A-1 )TdfdAijnn其中 adjA 是 A 的伴隨矩陣.25. 解:設(shè)B = (b ), A = (a ).由于 ATBA 的第 k 行第 k 列元素ijijnnnmnn為 ask b st atk ,所以s=1 t =1f (A) = tr(AT BA) = m nnsk st tk a b ak =1 s=1 t =1mnn= nna b a+sk st tk a b asj st tjk =1 s=1 t =1s=1 t =1(k j )a b a + ab amnn= nsk st tk 1 j1t tjk =1 s=

17、1 t =1t =1(k j )nn+ aij bit atj +L + anj bntatjt =1t =1故 f = ab + ani-1, j i-1,i it tjij ij i+1, j i+1,ib +L + ab+ b a + aba1 j 1i t =1ijnn= bit atj + bbiasj+L+ anjbnit =1s=1最后得fdfnn= bit atj + bsi asj = dAa t =1nm s=1nmnmij= BX + BT X特別地,當(dāng)B 是對(duì)稱矩陣時(shí),df = 2BA ;當(dāng)A 為列向量時(shí),f= AT BA ,dA且 df= BA + BT A .dA2

18、6. 解:設(shè)A = (a ), X = ()T , 由于ijnmn10TnnF ( X ) = AX = a1k xk ,L, amk xk k =1k =1TnnG( X ) = ( AX )T = ax ,L, ax ,1k kmk k k =1k =1所以FG= (a ,L, a )T ,= (a ,L, a ),1imi 1imi xxiiTdF FF= (a)T= ,L,故,L, a ,L, a ,L, a11m11nmn dXxx1n a11La1n dF FF = MM = A= ,L,dX T xx1n aLamn m1a11am1 LG TdG G= M = AT= ,L,n

19、 MdXxx1aLa 1nmn 解:因?yàn)?7.f (x) = (AX - b)T (AX - b) = X T AT AX - X T AT b - bT AX + bT b22AX - b故由上兩題的結(jié)果得= 2AT AX - AT b - (bT A)T = 2(AT AX - AT b)dfdXTf ff28. 解:因?yàn)? 1 ,L,n = (a ,L, a= a)T1iniixxxiii故有Tdf ff= (a1 ,L,a n ) .T= ,L,dX x1xn 11 1 e2t(t -e+ c1129. 解:A(t )dt = - e-t + c21 3 t 2 + c 231 1 (

20、e2 - 1)11e2 - 10 23 A(t )dt = 1 - e-10032e2t 2t 2 et 2ddtt 2( )A x dx = 2t e-t 22t 22e0 3t 2030. 解:設(shè) A = - 12 ,A 的特征值為l = 1 3i ,相應(yīng)的兩個(gè)特- 212征向量為11a = 1 +3i , b = 1 - 3i 22作矩陣11P = 1 +3i1 - 3i 22利用公式eix = cos x + i sin x ,則e3it0e= P-1Ate- 3it P0cos13t -sin3 3=- 23sin3t故1223sin3tAt 0x(t ) = e1 = .cos3t +sin3t 1 331. 解:設(shè) A = 35 ,它的特征值為l = 3 5i ,對(duì)應(yīng)的兩個(gè)線- 53性無(wú)關(guān)的特征向量為a = (1,i)T , b = (i,1)T ,作可逆矩陣P = 1i ,從而有i1ie(3+5i )t 1 1- i cos 5tsin 5t 10= = e Ae3t) (5i t 2 - i1 - sin 5tcos 5te 3-i10故e-t 0X (t ) = e At +etA(t -t )dt100t cos 5t cos

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論