版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)(教師用)成都市洛帶中學(xué) 劉德軍一、教材分析學(xué)習(xí)了“曲線與方程”之后,作為一般曲線典型例子,安排了本節(jié)的“圓的方程”。圓是學(xué)生比較熟悉的曲線,在初中曾經(jīng)學(xué)習(xí)過(guò)圓的有關(guān)知識(shí),本節(jié)內(nèi)容是在初中所學(xué)知識(shí)及前幾節(jié)內(nèi)容的基礎(chǔ)上,進(jìn)一步運(yùn)用解析法研究它的方程,它與其他圖形的位置關(guān)系及其應(yīng)用 同時(shí),由于圓也是特殊的圓錐曲線,因此,學(xué)習(xí)了圓的方程,就為后面學(xué)習(xí)其它圓錐曲線的方程奠定了基礎(chǔ) 也就是說(shuō),本節(jié)內(nèi)容在教材體系中起到承上啟下的作用,具有重要的地位,在許多實(shí)際問(wèn)題中也有著廣泛的應(yīng)用。二、學(xué)情分析學(xué)生在初中的學(xué)習(xí)中已初步了解了圓的有關(guān)知識(shí),本節(jié)將在上
2、章了曲線與方程的基礎(chǔ)上,在平面直角坐標(biāo)系中建立圓的代數(shù)方程,運(yùn)用代數(shù)研究直線與圓,圓與圓的位置關(guān)系,了解空間直角坐標(biāo)系,在這個(gè)過(guò)程中進(jìn)一步體會(huì)數(shù)形結(jié)合的,形成用代數(shù)解決幾何問(wèn)題的能力。三、目標(biāo) (一)知識(shí)與技能目標(biāo)(1)會(huì)推導(dǎo)圓的標(biāo)準(zhǔn)方程。(2)能運(yùn)用圓的標(biāo)準(zhǔn)方程正確地求出其圓心和半徑。(3)掌握?qǐng)A的標(biāo)準(zhǔn)方程的特點(diǎn),能根據(jù)所給有關(guān)圓心、半徑的具體條件準(zhǔn)確地寫(xiě)出圓的標(biāo)準(zhǔn)方程。(二)過(guò)程與方法目標(biāo)(1)體會(huì)數(shù)形結(jié)合,初步形成代數(shù)處理幾何問(wèn)題能力。(2)能根據(jù)不同的條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程。(三)情感與態(tài)度目標(biāo)圓是基于初中的知識(shí),同時(shí)又是初中的知識(shí)的加深,使學(xué)生懂得知識(shí)的連續(xù)性;圓在生活中
3、很常見(jiàn),通過(guò)圓的標(biāo)準(zhǔn)方程,說(shuō)明理論既來(lái)源于實(shí)踐,又服務(wù)于實(shí)踐,可以適時(shí)進(jìn)行辯證唯物主義思想教育四、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法1、重點(diǎn):圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程和圓標(biāo)準(zhǔn)方程特征的理解與掌握。2、難點(diǎn):圓的標(biāo)準(zhǔn)方程的應(yīng)用。3、解決辦法:充分利用課本提供的2個(gè)例題,通過(guò)例題的解決使初步熟悉圓的標(biāo)準(zhǔn)方程的用途和用法。五、教學(xué)過(guò)程首先通過(guò)課件展示生活中的圓,那么我們今天從另一個(gè)角度來(lái)研究圓。(一)復(fù)習(xí)提問(wèn)在初中,大家學(xué)習(xí)了圓的概念,哪一位同學(xué)來(lái)回答?問(wèn)題1:具有什么性質(zhì)的點(diǎn)的軌跡稱為圓?平面內(nèi)與一定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的軌跡稱為圓(教師在課件上畫(huà)圓)問(wèn)題2:圖哪個(gè)點(diǎn)是定點(diǎn)?哪個(gè)點(diǎn)是動(dòng)點(diǎn)?動(dòng)點(diǎn)具有什么性質(zhì)?圓
4、心和半徑都反映了圓的什么特點(diǎn)? 圓心C是定點(diǎn),圓周上的點(diǎn)M是動(dòng)點(diǎn),它們到圓心距離等于定長(zhǎng)|MC|=r,圓心和半徑分別確定了圓的位置和大小問(wèn)題3:求曲線的方程的一般步驟是什么?其中哪幾個(gè)步驟必不可少?求曲線方程的一般步驟為:(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意點(diǎn)M的坐標(biāo),簡(jiǎn)稱建系設(shè)點(diǎn);(如圖)(2)寫(xiě)出適合條件P的點(diǎn)M的集合P=M|P(M)|,簡(jiǎn)稱寫(xiě)點(diǎn)集;(3)用坐標(biāo)表示條件P(M),列出方程f(x,y)=0,簡(jiǎn)稱列方程;(4)化方程f(x,y)=0為最簡(jiǎn)形式,簡(jiǎn)稱化簡(jiǎn)方程;(5)證明化簡(jiǎn)后的方程就是所求曲線的方程,簡(jiǎn)稱證明其中步驟(1)(3)(4)必不可少下面我們用求曲線方程
5、的一般步驟來(lái)建立圓的標(biāo)準(zhǔn)方程(二)建立圓的標(biāo)準(zhǔn)方程1建系設(shè)點(diǎn)由學(xué)生在黑板上板演,并問(wèn)有無(wú)不同建立坐標(biāo)系的方法教師指出:這兩種建立坐標(biāo)系的方法都對(duì),原點(diǎn)在圓心這是特殊情況,現(xiàn)在僅就一般情況推導(dǎo)因?yàn)镃是定點(diǎn),可設(shè)C(a,b)、半徑r,且設(shè)圓上任一點(diǎn)M坐標(biāo)為(x,y)2寫(xiě)點(diǎn)集根據(jù)定義,圓就是集合P=M|MC|=r3列方程由兩點(diǎn)間的距離公式得:4化簡(jiǎn)方程將上式兩邊平方得:(x-a)2+(y-b)2=r2 (1)方程(1)就是圓心是C(a,b)、半徑是r的圓的方程我們把它叫做圓的標(biāo)準(zhǔn)方程這時(shí),請(qǐng)大家思考下面一個(gè)問(wèn)題問(wèn)題4:圓的方程形式有什么特點(diǎn)?當(dāng)圓心在原點(diǎn)時(shí),圓的方程是什么?這是二元二次方程,展開(kāi)后沒(méi)
6、有xy項(xiàng),括號(hào)內(nèi)變數(shù)x,y的系數(shù)都是1點(diǎn)(a,b)、r分別表示圓心的坐標(biāo)和圓的半徑當(dāng)圓心在原點(diǎn)即C(0,0)時(shí),方程為 x2+y2=r2教師指出:圓心和半徑分別確定了圓的位置和大小,從而確定了圓,所以,只要a,b,r三個(gè)量確定了且r0,圓的方程就給定了這就是說(shuō)要確定圓的方程,必須具備三個(gè)獨(dú)立的條件注意,確定a、b、r,可以根據(jù)條件,利用待定系數(shù)法來(lái)解決(三)圓的標(biāo)準(zhǔn)方程的應(yīng)用學(xué)生練習(xí)一:1說(shuō)出下列圓的圓心和半徑:(學(xué)生回答)(1)(x-3)2+(y-2)2=5;(2)(2x+4)2+(2y4)2=8;(3)(x+2)2+ y2=m2 (m0)教師指出:已知圓的標(biāo)準(zhǔn)方程,要能夠熟練地求出它的圓心
7、和半徑2、(1)圓心是(3,3),半徑是2的圓是_.(2)以(3,4)為圓心,且過(guò)點(diǎn)(0,0)的圓的方程為( ) A x2+y2= 25 B x2+y2= 5 C (x+3)2+(y+4)2= 25 D (x-3)2+(y-4)2= 25教師糾錯(cuò),分別給出正確答案:2、 (1)(x-3)2+(y3)2=4;(2)D.指出:要求能夠用圓心坐標(biāo)、半徑長(zhǎng)熟練地寫(xiě)出圓的標(biāo)準(zhǔn)方程例1求滿足下列條件各圓的方程:(1) 求以C(1,3)為圓心,并且和直線相切的圓的方程(2) 圓心在x軸上,半徑為5且過(guò)點(diǎn)(2,3)的圓。解:(1)已知圓心坐標(biāo)C(1,3),故只要求出圓的半徑,就能寫(xiě)出圓的標(biāo)準(zhǔn)方程 因?yàn)閳AC和直
8、線相切,所以半徑就等于圓心C到這條直線的距離 根據(jù)點(diǎn)到直線的距離公式,得因此,所求的圓的方程是 (2)設(shè)圓心在x軸上半徑為5的圓的方程為(x-a)2+y2=25點(diǎn)A(2,3)在圓上(2a)2+32=25a=-2或6所求圓的方程為(x2)2+y2=25或(x-6)2+y2=25這時(shí),教師小結(jié)本題:求圓的方程的方法(1)定義法 (2) 待定系數(shù)法,確定a,b,r;學(xué)生練習(xí)二:1、 以C(3,-5)為圓心,且和直線3x-7y+2=0相切的圓的方程_.教師糾錯(cuò),分別給出正確答案:(x3)2+(y+5)2=32。 例2已知圓的方程,求經(jīng)過(guò)圓上一點(diǎn)的切線方程 解:如圖,設(shè)切線的斜率為,半徑OM的斜率為 因
9、為圓的切線垂直于過(guò)切點(diǎn)的半徑,于是 (讓學(xué)生注意斜率不存在時(shí)和為0的情況)經(jīng)過(guò)點(diǎn)M的切線方程是 ,整理得 因?yàn)辄c(diǎn)在圓上,所以,所求切線方程是法二:勾股定理法三:向量變式一:已知圓的方程為x2+y2= 1,求過(guò)點(diǎn)(2,2)的切線方程。變式二:已知圓的方程為(x-1)2+(y+1)2=1 ,求過(guò)點(diǎn)(2,2)的切線方程。學(xué)生練習(xí)三:1.已知圓求:(1)過(guò)點(diǎn)A(4,-3)的切線方程是_.(2)過(guò)點(diǎn)B(-5,2)的切線方程是_教師糾錯(cuò),分別給出正確答案:(1)4x-3y=25;(2)x=-5或21x-20y+145=0(四)本課小結(jié)1圓的方程的推導(dǎo)步驟;2圓的方程的特點(diǎn):點(diǎn)(a,b)、r分別表示圓心坐標(biāo)
10、和圓的半徑;3求圓的方程的兩種方法:(1)待定系數(shù)法;(2)定義法4. 數(shù)型結(jié)合的數(shù)學(xué)思想5. 過(guò)定點(diǎn)求圓切線方程.(五)、布置作業(yè) 習(xí)題7.6 1,2,3(六)、板書(shū)設(shè)計(jì)7.6圓的標(biāo)準(zhǔn)方程一、 建立圓的標(biāo)準(zhǔn)方程1、 圓的方程的推導(dǎo)(x-a)2+(y-b)2=r22、 圓的標(biāo)準(zhǔn)方程的特點(diǎn):圓心(a,b)定位,r定型二 圓的標(biāo)準(zhǔn)方程的應(yīng)用例1例2學(xué)生練習(xí)六、教學(xué)反思:為了激發(fā)學(xué)生的主體意識(shí),教學(xué)生學(xué)會(huì)學(xué)習(xí)和學(xué)會(huì)創(chuàng)造,同時(shí)培養(yǎng)學(xué)生的應(yīng)用意識(shí),本節(jié)內(nèi)容可采用“引導(dǎo)探究”教學(xué)模式進(jìn)行教學(xué)設(shè)計(jì) 所謂“引導(dǎo)探究”是教師把教學(xué)內(nèi)容設(shè)計(jì)為若干問(wèn)題,從而引導(dǎo)學(xué)生進(jìn)行探究的課堂教學(xué)模式,教師在教學(xué)過(guò)程中,主要著眼
11、于“引”,啟發(fā)學(xué)生“探”,把“引”和“探”有機(jī)的結(jié)合起來(lái)。教師的每項(xiàng)教學(xué)措施,都是給學(xué)生創(chuàng)造一種思維情景,一種動(dòng)腦、動(dòng)手、動(dòng)口并主動(dòng)參與的學(xué)習(xí)機(jī)會(huì),激發(fā)學(xué)生的求知欲,促使學(xué)生解決問(wèn)題 其基本教學(xué)模式是:復(fù)習(xí)舊知以舊悟新提出問(wèn)題嘗試探究例題示范探求方法反饋練習(xí)學(xué)會(huì)應(yīng)用點(diǎn)評(píng)矯正總結(jié)交流圓的標(biāo)準(zhǔn)方程學(xué)案(學(xué)生用)課堂練習(xí)1、說(shuō)出下列圓的圓心和半徑: (1)(x-3)2+(y-2)2=5;圓心_,半徑_.(2)(2x+4)2+(2y4)2=8;圓心_,半徑_.(3)(x+2)2+ y2=m2 (m0)圓心_,半徑_.2、(1)圓心是(3,4),半徑是2的圓是_.(2)以(3,4)為圓心,且過(guò)點(diǎn)(0,0
12、)的圓的方程為( ) A x2+y2= 25 B x2+y2= 5 C (x+3)2+(y+4)2= 25 D (x-3)2+(y-4)2= 253以C(3,-5)為圓心,且和直線3x-7y+2=0相切的圓的方程_.4.已知圓求:(1)過(guò)點(diǎn)A(4,-3)的切線方程是_.(2)過(guò)點(diǎn)B(-5,2)的切線方程是_考題在線(思考題)1、(2007湖南理)圓心為且與直線相切的圓的方程是 2、(2006杭州期末)求與直線y=x相切,圓心在直線y=3x上,且過(guò)點(diǎn)(,)的圓。3、(2007湖北文)由直線上的一點(diǎn)向圓引切線,則切線長(zhǎng)的最小值為( )A1BCD4、已知點(diǎn)在圓內(nèi),則與圓的位置關(guān)系是_.圓的標(biāo)準(zhǔn)方程(
13、課堂實(shí)錄)成都市洛帶中學(xué) 劉德軍師:讓我們來(lái)看一下生活中常見(jiàn)的一些事物(通過(guò)課件展示生活中的圓),這些都是什么圖形?生:圓。師:對(duì),遠(yuǎn)在我們生活中很常見(jiàn),也代表著很美的東西,完美無(wú)缺,十全十美,都是指的圓,圓是很美的曲線,那么我們今天從另一個(gè)角度來(lái)研究圓。(一)復(fù)習(xí)提問(wèn)師:在初中,大家學(xué)習(xí)了圓的概念,哪一位同學(xué)來(lái)回答?生:平面內(nèi)與一定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的軌跡稱為圓.師:這是高中的概念。(教師在課件上畫(huà)圓)改變半徑大小,和圓心的位置,圓發(fā)生了變化,這說(shuō)明了什么?生:半徑?jīng)Q定大小,圓心決定位置。師:對(duì):圖哪個(gè)點(diǎn)是定點(diǎn)?哪個(gè)點(diǎn)是動(dòng)點(diǎn)?動(dòng)點(diǎn)具有什么性質(zhì)?圓心和半徑都反映了圓的什么特點(diǎn)?生:
14、圓心C是定點(diǎn),圓周上的點(diǎn)M是動(dòng)點(diǎn),它們到圓心距離等于定長(zhǎng)|MC|=r,圓心和半徑分別確定了圓的位置和大小。師:求曲線的方程的一般步驟是什么?其中哪幾個(gè)步驟必不可少?生:求曲線方程的一般步驟為:(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意點(diǎn)M的坐標(biāo),簡(jiǎn)稱建系設(shè)點(diǎn);(如圖)(2)寫(xiě)出適合條件P的點(diǎn)M的集合P=M|P(M)|,簡(jiǎn)稱寫(xiě)點(diǎn)集;(3)用坐標(biāo)表示條件P(M),列出方程f(x,y)=0,簡(jiǎn)稱列方程;(4)化方程f(x,y)=0為最簡(jiǎn)形式,簡(jiǎn)稱化簡(jiǎn)方程;(5)證明化簡(jiǎn)后的方程就是所求曲線的方程,簡(jiǎn)稱證明其中步驟(1)(3)(4)必不可少師:下面我們用求曲線方程的一般步驟來(lái)建立圓的標(biāo)準(zhǔn)方
15、程(請(qǐng)一位同學(xué)板演)生:因?yàn)镃是定點(diǎn),可設(shè)C(a,b)、半徑r,且設(shè)圓上任一點(diǎn)M坐標(biāo)為(x,y)根據(jù)定義,圓就是集合P=M|MC|=r由兩點(diǎn)間的距離公式得:將上式兩邊平方得:(x-a)2+(y-b)2=r2 (1)方程(1)就是圓心是C(a,b)、半徑是r的圓的方程我們把它叫做圓的標(biāo)準(zhǔn)方程師:非常好,有無(wú)不同建立坐標(biāo)系的方法生:有,圓心為坐標(biāo)原點(diǎn)。師:這兩種建立坐標(biāo)系的方法都對(duì),原點(diǎn)在圓心這是特殊情況,我們主要研究一般情況請(qǐng)大家思考下面一個(gè)問(wèn)題圓的方程形式有什么特點(diǎn)?當(dāng)圓心在原點(diǎn)時(shí),圓的方程是什么?生:這是二元二次方程,展開(kāi)后沒(méi)有xy項(xiàng),括號(hào)內(nèi)變數(shù)x,y的系數(shù)都是1點(diǎn)(a,b)、r分別表示圓心
16、的坐標(biāo)和圓的半徑當(dāng)圓心在原點(diǎn)即C(0,0)時(shí),方程為 x2+y2=r2師:圓心和半徑分別確定了圓的位置和大小,從而確定了圓,所以,只要a,b,r三個(gè)量確定了且r0,圓的方程就給定了這就是說(shuō)要確定圓的方程,必須具備三個(gè)獨(dú)立的條件注意,確定a、b、r,可以根據(jù)條件,利用待定系數(shù)法來(lái)解決那么下面來(lái)做一下練習(xí)。1說(shuō)出下列圓的圓心和半徑:(學(xué)生回答)(1)(x-3)2+(y-2)2=5;(2)(2x+4)2+(2y4)2=8;(3)(x+2)2+ y2=m2 (m0)師:已知圓的標(biāo)準(zhǔn)方程,要能夠熟練地求出它的圓心和半徑2、(1)圓心是(3,3),半徑是2的圓是_.(2)以(3,4)為圓心,且過(guò)點(diǎn)(0,0
17、)的圓的方程為( ) A x2+y2= 25 B x2+y2= 5 C (x+3)2+(y+4)2= 25 D (x-3)2+(y-4)2= 25生: (1)(x-3)2+(y3)2=4;(2)D.師:要求能夠用圓心坐標(biāo)、半徑長(zhǎng)熟練地寫(xiě)出圓的標(biāo)準(zhǔn)方程那么我們?cè)賮?lái)看一下這一道題例1求滿足下列條件各圓的方程:(3) 求以C(1,3)為圓心,并且和直線相切的圓的方程(4) 圓心在x軸上,半徑為5且過(guò)點(diǎn)(2,3)的圓。師:如果要求一個(gè)圓,你要找些生么?生:圓心和半徑。師:但是(2)中能不能直接找到圓心?生:不能。是:那用什么方法呢?生:待定系數(shù)法。師:非常好,下面同學(xué)們自己算一算。生(板演):解:(1
18、)已知圓心坐標(biāo)C(1,3),故只要求出圓的半徑,就能寫(xiě)出圓的標(biāo)準(zhǔn)方程 因?yàn)閳AC和直線相切,所以半徑就等于圓心C到這條直線的距離 根據(jù)點(diǎn)到直線的距離公式,得因此,所求的圓的方程是 (2)設(shè)圓心在x軸上半徑為5的圓的方程為(x-a)2+y2=25點(diǎn)A(2,3)在圓上(2a)2+32=25a=-2或6所求圓的方程為(x2)2+y2=25或(x-6)2+y2=25師:求圓的方程的方法(1)定義法 (2) 待定系數(shù)法,要確定a,b,r;我們來(lái)做做練習(xí)。2、 以C(3,-5)為圓心,且和直線3x-7y+2=0相切的圓的方程_.生:(x3)2+(y+5)2=32。師:上一題,我們是知道圓的切線,求圓的方程,那我能不能把原來(lái)的結(jié)論和條件互換一下,知道圓,秋切線方程?下面我們來(lái)看一下例2 例2已知圓的方程,求經(jīng)過(guò)圓上一點(diǎn)的切線方程師:該怎么做呢? 生:知道點(diǎn)M,找斜率。師:還應(yīng)該注意些什么?生:斜率不存在時(shí)。師:為了避免這些,我們可不可以用其他的方法來(lái)做。生思考后:勾股定理,向量。師:(把學(xué)生分成三組分別用三種方法做)最后得出:師:這個(gè)點(diǎn)是在圓上,如果是在圓外又該怎么做呢?(提示學(xué)生
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)汽車(chē)美容行業(yè)開(kāi)拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)電影行業(yè)營(yíng)銷(xiāo)創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)礦用車(chē)輛維修行業(yè)營(yíng)銷(xiāo)創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)動(dòng)力總成零部件行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)模擬集成電路設(shè)計(jì)行業(yè)開(kāi)拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)數(shù)據(jù)倉(cāng)庫(kù)的八個(gè)步驟
- 廣東省2025屆兩校高三上學(xué)期第一次聯(lián)合模擬考試英語(yǔ)試題
- 2021-2026年中國(guó)動(dòng)物用疫苗市場(chǎng)調(diào)查研究及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 二年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)集錦
- 5米古樹(shù)提前放電避雷針 防側(cè)擊輕質(zhì)玻璃鋼接閃桿 伸縮式抱箍
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之22:“8運(yùn)行-8.1運(yùn)行策劃和控制”(雷澤佳編制-2025B0)
- 單位網(wǎng)絡(luò)安全攻防演練
- 新交際英語(yǔ)(2024)一年級(jí)上冊(cè)Unit 1~6全冊(cè)教案
- 神經(jīng)外科基礎(chǔ)護(hù)理課件
- 2024中國(guó)儲(chǔ)備糧管理集團(tuán)限公司招聘700人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 內(nèi)蒙古赤峰市2023-2024學(xué)年高一上學(xué)期期末考試物理試題(含答案)
- 湖北省黃岡高級(jí)中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
- 建筑工程機(jī)械設(shè)備安全技術(shù)操作規(guī)程
- 故宮2024課件:中國(guó)古代皇家宗教信仰探秘
- 2024年中國(guó)石油鉆機(jī)電機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 靜脈治療輸液工具的選擇2024課件
評(píng)論
0/150
提交評(píng)論