




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 畢 業(yè) 設(shè) 計(論 文)外 文 文 獻 譯 文 及 原 文學(xué) 生:王波波學(xué) 號:200705010322院 (系):機電工程學(xué)院專 業(yè):機械設(shè)計制造及其自動化指導(dǎo)教師:周明貴2011年5月20日在先進的結(jié)構(gòu)發(fā)泡成型中獲得一個有高間隙率方法的研究John W. S. Lee, Jing Wang, Jae D. Yoon, and Chul B. Park摘要:結(jié)構(gòu)性泡沫提供比它們同類更多的優(yōu)點,包括更大的幾何準確性、最終產(chǎn)品的表面上沒有凹痕,較低的重量(由此延伸的需要以較低的材料),和更高的剛度與重量的比率。用傳統(tǒng)的結(jié)構(gòu)實現(xiàn)一個合適的空隙率在結(jié)構(gòu)泡沫發(fā)泡成型方法已經(jīng)有一些成功;這些方法允許小
2、的控制和產(chǎn)量大的孔洞及非均勻的單元結(jié)構(gòu)。本文章報告使用一種先進的結(jié)構(gòu)發(fā)泡成型機以一個高的空隙率,達到一個統(tǒng)一的單元結(jié)構(gòu)。我們研究以下方面:注塑工藝參數(shù)流量、吹氣的理論容量,和熔體溫度。在內(nèi)部的剖面壓力不同的加工條件下的模腔內(nèi)研究了塑料的成核和生長。通過優(yōu)化工藝條件,所有我們?nèi)〉昧艘粋€統(tǒng)一的單元結(jié)構(gòu)和非常高的空隙率(40%)。1簡介:結(jié)構(gòu)成型是塑料成型所使用的一種傳統(tǒng)的注塑機。一種用物理吹劑(PBA),另一種用化工吹劑(CBA),或者兩者都被選用,在這個過程中,產(chǎn)生一種單元(泡沫)結(jié)構(gòu)。這種結(jié)構(gòu)性泡沫成型的優(yōu)點有缺乏凹痕的最后一個部分的表面上,一個減了體重,低背壓,更快捷的生產(chǎn)周期時間,具有相當(dāng)
3、高轉(zhuǎn)速.因為這獨特的優(yōu)勢,低壓預(yù)塑式結(jié)構(gòu)發(fā)泡成型技術(shù)中得到了廣泛的應(yīng)用制造大產(chǎn)品,需要幾何精度。實現(xiàn)一個適當(dāng)?shù)目障堵试诮Y(jié)構(gòu)泡沫使用傳統(tǒng)的注塑機并沒有證明是非常成功的,但由于這些成型方法允許小的控制和產(chǎn)量大的孔洞及非均勻的細胞結(jié)構(gòu)。獲得一種統(tǒng)一的單元結(jié)構(gòu)具有高空隙率、機器必須能先具有一張完全溶解和均勻的氣體混合物的沒有任何氣體的口袋。如果一個統(tǒng)一的單一氣體解決方案不是達到前發(fā)泡,將很難獲得一種統(tǒng)一的細胞結(jié)構(gòu)發(fā)泡制品。在決策中,為滿足這一需求,要求一種先進的結(jié)構(gòu)發(fā)泡成型技術(shù)與連續(xù)聚合物發(fā)展,該技術(shù)有利于均勻的離散和溶解氣體的聚合物熔體在成型過程中,從而保護的產(chǎn)生對難溶氣體大口袋。在一個我們展示了以
4、前的工作,用一個定制的可行性小注塑系統(tǒng)組成的一個微型注射單位和發(fā)泡擠出機,基于這種新技術(shù)。然而,除了改善硬件技術(shù),它也是必要開發(fā)適當(dāng)?shù)奶幚聿呗砸钥刂萍毎L成核和模具型腔內(nèi)。在此背景下,當(dāng)前一些探討處理策略需要獲得一個統(tǒng)一的高間隙先進的結(jié)構(gòu)發(fā)泡成型工藝單元結(jié)構(gòu)。我們調(diào)查了下列重要參數(shù):吹劑含量、注入流量、熔體溫度。使用我們的結(jié)構(gòu)性泡沫獲得先進的成型技術(shù)進行表征方面的空隙率、細胞密度、細胞三維地形尺寸分布;x射線用來描寫的三維結(jié)構(gòu)泡沫細胞的組織形態(tài)。內(nèi)部的壓力剖面下模具型腔也被記錄在案,為了更好的理解不同加工條件下細胞的形核、長大的行為。2研究背景:近年來,泡沫塑料注射成型的優(yōu)勢已經(jīng)引發(fā)了改進結(jié)
5、構(gòu)發(fā)泡成型技術(shù)。Trexel公司開發(fā)了一種微往復(fù)式注射成型技術(shù)的基出上,對預(yù)塑式注塑機進行了大量的工作。以進一步改善質(zhì)模板在微孔發(fā)泡過程中使用了微結(jié)構(gòu)成型。Turng,蘇達權(quán)等, ,研究了改變工藝條件的影響上,特別是在當(dāng)前國內(nèi)外微孔結(jié)構(gòu)的例子, 混合成型用結(jié)構(gòu).何振平,高慶宇報道的創(chuàng)造與微孔發(fā)泡細胞的結(jié)構(gòu)和表面質(zhì)量良好使用了共聚物聚碳酸脂(PC).尹恩惠,孫俐,在當(dāng)前國內(nèi)外微孔形貌控制的聚丙烯(PP)等課程教學(xué)中存在的報道說,有一個高慶宇甲級的表面和高空隙率可以達到通過使用一個透氣通道.發(fā)泡等,綜述了最近高慶宇的微孔復(fù)合材料的新型高分子材料和鋼筋與礦物填料及自然光纖。Shimbo報道, 在典型
6、的結(jié)構(gòu)成型工藝另一種微孔發(fā)泡過程中注塑機,使用了一個預(yù)塑式注塑機被用來塑化螺柱塞聚合物,是用來注入聚合物進入模具腔,另一個替代方案泡沫注射成型工藝是在發(fā)達的德國亞琛的一個系統(tǒng),在這個系統(tǒng)中,氣體注射在一個特別設(shè)計的噴油嘴,它安裝在塑化單元之間的,可對噴嘴關(guān)閉的常規(guī)射出成型機。此外,它達到更好的分散性之氣, 靜態(tài)混合元素被安裝之間的氣體噴油嘴和關(guān)閉噴嘴。這項技術(shù)后來為商業(yè)化專利。在2006年,有人提出了一個結(jié)構(gòu),經(jīng)過在先進的高慶宇發(fā)泡成型技術(shù)的基礎(chǔ)上,預(yù)塑式注射機傳統(tǒng)的結(jié)構(gòu)發(fā)泡技術(shù)這樣就提高了注入氣體會完全溶解在聚合物。由一個強化技術(shù)的齒輪油泵及附加蓄能器使聚合物/氣體混合物形成一步連續(xù)不斷的成
7、型操作。換句話說,更新的設(shè)計完全解耦,氣體溶解步驟的注塑操作使用一個主驅(qū)動泵。這一先進的結(jié)構(gòu)發(fā)泡的細節(jié) 技術(shù)概述在下一節(jié)。3先進的成型結(jié)構(gòu)先進的成型機。完整(或?qū)嵸|(zhì))溶解在聚合物熔體,盡管是穩(wěn)定成型工藝。但是它認識到連續(xù)成型行為不可避免地引起不一致的氣體充填、這種結(jié)構(gòu)使得流動但是聚合物熔體和天然氣是連續(xù)的(即不停止在注射時期)。圖1圖2圖3-4圖1顯示的原理圖結(jié)構(gòu),經(jīng)過先進的泡沫成型機在發(fā)達的Toronto大學(xué)的這臺機器包含了一主驅(qū)動泵(例如:一個齒輪泵)和額外的蓄電池、附于擠壓桶和之間的關(guān)斷閥。(一個位于前關(guān)閉閥門柱塞,另一種是位于噴嘴處。)此設(shè)計完全減弱氣體溶解步驟的注塑操作使用和維護主動
8、驅(qū)動泵齒輪泵的穩(wěn)態(tài)氣體溶解作用。在注塑業(yè)務(wù),橡膠壓片機壓出的螺桿轉(zhuǎn)動,而生成聚合物/氣體混合物收集在加時賽的蓄電池。后兩者混合遭受到注塑和收集到的,它移動通過柱塞機制進入到下一個周期。這項技術(shù)確保了壓力,在擠壓桶內(nèi)保持相對穩(wěn)定,達到一致的氣體充填是這樣一個統(tǒng)一的聚合物/氣體混合物是取得了不管壓力波動柱塞。這項技術(shù)已經(jīng)成為商業(yè)專利。均勻分布和完全溶解吹塑過程保持一致的氣體充填的聚合物和替代或近乎溶解所有的氣體在聚合物熔體,螺桿必須保持相對穩(wěn)定的自轉(zhuǎn)時,在螺桿的優(yōu)點是恒轉(zhuǎn)速移動一倍。首先,一致的氣體充填是容易實現(xiàn):由于壓力波動的擠壓桶內(nèi)減至最低。第二,維持一個高壓力下確保解散的注入氣體進入聚合物熔
9、體。一個統(tǒng)一的聚合物/氣體混合物,其中的氣體已經(jīng)完全(或?qū)嵸|(zhì)上)溶解, 為改善制品塑料結(jié)構(gòu)。就需要有一個常數(shù)溶氣/重量配比提供理論依據(jù)。表1圖5圖6圖7 .瓦斯含量的影響和注入流量等泡沫的形態(tài)一個齒輪油泵是一種最基本的組成部分,因為它提供了一份改進工藝恒體積流率對聚合物/氣體混合物;泵上的壓力,從而控制的擠壓,并允許一個一致的連續(xù)性桶重量比為粘性聚合物熔體,壓力在擠壓酒桶保持相對穩(wěn)定,因為這種積極的位移的齒輪泵。由于氣體流量壓力取決于在桶顯著,恒氣流量可以通過保持固定的壓力,在擠壓桶。聚合物/氣體混合物能夠控制的變轉(zhuǎn)速的齒輪泵。通過獨立控制的流動速率兩種氣體與聚合物/氣體混合物,這種聚合物流量
10、也可以被控制住。因此,既有一致的重量比”,并獲得統(tǒng)一流動聚合物/氣體混合物可以很容易地實現(xiàn)與齒輪泵。這些優(yōu)勢不能被輕易的做到了,用一個關(guān)閉或止回閥。背后的基本原理與裝備新模型具有額外的蓄能器來源于需要適應(yīng)這個混合物在每個周期的注射期間使螺桿可以勻速旋轉(zhuǎn)和煤氣可以不斷的注入melt.4不斷旋轉(zhuǎn)螺桿是一種重要的差異,從以前所有的結(jié)構(gòu)發(fā)泡成型技術(shù)是基于低壓塑料注塑系統(tǒng)。一旦是壓力相對穩(wěn)定的擠出桶,它會變得更容易控制的流量,注入氣體的高分子,和氣體即可更為均勻散布到融化圖8 .細胞密度測量的地點A-C(0.3硅油%氮氣)。當(dāng)一個一致的氣體聚合物量比,實現(xiàn)了注入氮氣,有一個非常低的溶解性,可完全溶化,如
11、果一個足夠高的壓力保持在這兩種擠壓桶和累加器。“足夠高的壓力”意味著熔體壓力遠高于溶解性的壓力進行了給定的氣體的注入聚合物熔體。此外,保持了足夠高的壓力后的油已經(jīng)完全溶解,防止形成第二階段在聚合物熔體在積累階段。因為溶解性的壓力進行了瓦斯含量要求產(chǎn)生一個fine-celled結(jié)構(gòu)例如,為0.1-1.0% N2期的140-1400 psi的高密度聚乙烯(HDPE)在200°C17號低比壓極限存在的低壓預(yù)塑式結(jié)構(gòu)性泡沫成型機(最大許用壓力3000 psi),一個足夠高的壓力就可以很容易地保持先進的結(jié)構(gòu)發(fā)泡成型機。4結(jié)果和討論:加工參數(shù)的影響程度,充模。圖4顯示了吹劑的影響(氮氣)和溫度對
12、泡沫融化程度充滿了模具。卒中是用于不同的注入不同數(shù)目的N2為了達到不同的空泡內(nèi)餾份:60,50,和40毫米,和0.5 ,0.1,0.3硅油%氮氣,分別。這些注入中風(fēng)占期末無效的分數(shù)占17%,31%和45%,分別。很清楚,氮氣含量和噴射流量中起到了至關(guān)重要的作用,在確定充填型腔的程度。充填型腔的程度隨氮氣含量和注入流量而增加。因為低壓結(jié)構(gòu)發(fā)泡成型使用一種近程注射,在這個過程中,依靠泡沫膨脹以填充模子腔。一個更高的氮氣含量增加的程度,從而提高了泡沫膨脹模具,也是值得注意是由高細胞密度增加氮氣含量是另一個推動力的創(chuàng)作中較大的空系率。注射充模流動速率也受到了影響。因為在何種程度上的不同,熔體冷卻流量、
13、更高注射注塑流動速度下降冷卻速率在注射過程中,這導(dǎo)致熔融粘度較低,同時,也增加了聚合物的力學(xué)性能。此外,因為熔體溫度比較高,在高注入流量、時間較長的細胞形核、長大。應(yīng)該指出的是,晶核的成核和生長在模具型腔熔體溫度降低會了停一下下面的結(jié)晶溫度。5總結(jié)在這項研究中,實驗對各種材料的低壓注塑成型加工條件進行了調(diào)查,注射流量和模腔平均壓力在注塑中起到了至關(guān)重要的作用,它也發(fā)現(xiàn)氮氣的數(shù)量對形成致密的單元結(jié)構(gòu)很重要。當(dāng)?shù)獨夂刻?即,0.1硅油%),空腔壓降成核率會下降并導(dǎo)致制品的密度過低。另一方面,當(dāng)?shù)獨夂孔銐蚋?例如,0.3硅油%及以上),會導(dǎo)致制品密度過高。我們還發(fā)現(xiàn),沒有一個合適的阻力,我們不
14、可能獲得一個統(tǒng)一的制品結(jié)構(gòu)和較高的制品精度。通過優(yōu)化所有的壓力加工條件,我們就能實現(xiàn)一個統(tǒng)一的細單元結(jié)構(gòu)和較高的制品精度(接近40%)。參考文獻(1) Hornsby, P. R. Thermoplastics Structural Foams: Part 2 Properties and Application. Mater.Eng. 1982, 3, 443.(2) Ahmadi, A. A.; Hornsby, P. R. Moulding and Characterization Studies with Polypropylene Structural Foam, Part 1: S
15、tructure-Property Interrelationships. Plast.Rubber Process.Appl. 1985, 5, 35.(3) Hikita, K. Development of Weight Reduction Technology for Door Trip Using Foamed PP. JSAE ReV.2002, 23, 239.(4) Park, C. B.; Xu, X. Apparatus and Method for Advanced Structural Foam Molding. U.S. Patent Application 11/2
16、19,309, filed Sep 2, 2005;Strategies to Achieve a Uniform Cell Structure with a High Void Fraction in Advanced Structural Foam MoldingABSTRACT:Structural foams offer numerous advantages over their solid counterparts, including greater geometrical accuracy, the absence of sink marks on the final prod
17、ucts surface, lower weight (and, by extension, the need for less material), and a higher stiffness-to-weight ratio. The possibility of achieving a suitable void fraction in structural foams using conventional structural foam molding methods, however, has been of limited success;these methods allow f
18、or little control and typically yield large voids and a nonuniform cell structure. This article reports on our use of an advanced structural foam molding machine to achieve a uniform cell structure with a high void fraction. We studied the following processing parameters: injection flow rate, blowin
19、g agent content, and melt temperature. The pressure profile inside the mold cavity under various processing conditions was also investigated to elucidate cell nucleation and growth behaviors. By optimizing all processing conditions, we achieved a uniform cell structure and a very high void fraction
20、(over 40%).IntroductionStructural foams are plastic foams manufactured using ,conventional preplasticating-type injection-molding machines.A physical blowing agent (PBA), chemical blowing agent,(CBA), or both are employed in the process to produce a cellular(foam) structure. The advantages of struct
21、ural foam molding,include the absence of sink marks on the final parts surface, a reduced weight, a low back pressure, a faster production cycle ,-3 Because of thisunique set of advantages, a low-pressure preplasticating-type,structural foam molding technology has been used widely formanufacturing l
22、arge products that require geometric accuracy. Achieving a suitable void fraction in structural foams using conventional structural foam molding has not proven to be successful, however, as these molding methods allow for littlecontrol and yield large voids and a nonuniform cell obtain a uniform cel
23、l structure with a high void fraction,the machine must be,5 This technology facilitates the uniform dispersion and dissolution of gas in the polymer melt during the structural foam molding process, thereby safe guarding against the creation of large, undissolved gas pockets. In a previouswork,5 we d
24、emonstrated the feasibility of using a customized small injection molding system consisting of a miniinjection unit and a foaming extruder based on this newtechnology. However, in addition to improvedhardware technology, it is also required to develop appropriate processingstrategies to control cell
25、 nucleation and growth inside the mold cavity. In this context, the current article discusses some processing strategies required to obtain a uniform cell structure with a high void fraction in an advanced structural foam molding process. We investigated the following critical parameters: blowing ag
26、ent content, injection flow rate, and melt temperature. The structural foams obtained using our advanced molding technology were characterized in terms of voidfraction, cell density, and cell size distribution; three-dimensional X-ray topography was usedto show the 3-D cell morphologies of the struc
27、tural foams. The pressure profile inside the mold cavity was also recorded under variousBackgroundIn recent years, the advantages of foam injection molding have prompted improvements in structural foam moldingtechnologies. Trexel Inc. developed a microcellular injection molding technology (MuCell te
28、chnology) based on a reciprocating-type injection molding machine.6,7 A great deal of work has been carried out to further improve the quality of themicrocellular foams produced using the MuCell process. Turng et al., for example, investigated the impact of changingprocessing conditions on the micro
29、cellular foam structures, especially in cases of coinjection molding with nanocomposites Kanai et al. reported the creation of microcellular foams with a good cell structure and surface quality using copolymer polycarbonate reported the use of CaCO3 for controlling the microcellular foam morphology
30、of polypropylene (PP). Sporrer et al. reported that a class-A surface and a high void fraction could be achieved in foaming by using a breathing mold.12 Recently, Bledzki et al. reviewed microcellular polymer materials and microcellular composites reinforced with mineral fillers and natural fibers.
31、In 2000, Shimbo reported an alternative microcellular foam process that employed a preplasticating-type injection molding machine.14 A screw was used to plasticate the polymer, and a plunger was used to inject the polymer into the mold cavity as in typical structural molding. Another alternative foa
32、m injection molding process was developed at IKV, Aachen, this system, gas was injected in a specially designed injection nozzle mounted between the plasticizing unit and the shut-off nozzle of a conventional injection molding machine. Furthermore,to achieve better dispersion of the gas, static mixi
33、ng ,elements were mounted between the gas injection nozzle and the shut-off nozzle. This technology was later commercialized by SulzerChemtech.In 2006, Park et al. presented an advanced structural foam molding technology based on a preplasticating,5 The conventional structural foaming technology was
34、 improved such that the injected gas would completely dissolve into the polymer. The enhanced technology consisted of a gear pump and an additional accumulator to make the polymer/gas mixture formation step continuous regardless of the stop-and-flow molding operations. In other words, the newer desi
35、gn completely decoupled the gas dissolution step from the injection and molding operations using a positive-displacement pump. The details of this advanced structural foaming technology are outlined in the next section.This technology4 promotes uniform gas dispersion and complete (or substantial) di
36、ssolution in the polymer melt,despite the non -steady molding process. Recognizing that stop and-flow molding behavior inevitably causes inconsistent gasdosing, this design allows the flows of the polymer melt and gas to be continuous (i.e., not to stop during the injection period Figure 1 shows a s
37、chematic of the advanced structural foam molding machine developed at the University of Toronto.4 This machine comprises a positive-displacement pump (i.e., a gear pump) and an additionalaccumulator, which is attached between the extrusion barrel and the shut-off valves. (One shut-off valve is locat
38、ed before the plunger, and the other is located at the nozzle.) The design completely decouples the gas dissolution step from the injection and molding operations using thepositive-displacement gear pump and maintains steady-state gas dissolution. During the injection and molding operations, theplas
39、ticating screw rotates, and the generated polymer/gas mixture collects in the extra accumulator. After the mixture has beensubjected to both injection and molding and has been collected,it moves through the plunger mechanism to be injected intothe next cycle. This technology ensures that the pressur
40、e in the extrusion barrel is relatively constant and that consistent gasdosing is attained so that a uniform polymer/gas mixture is achieved regardless of the pressure fluctuations in the plunger.This technology has been patentedHomogeneous Distribution and Complete Dissolution of Blowing Agent.To m
41、aintain consistent gas dosing of thepolymer and to completely or near-completely dissolve all of the gas in the polymer melt, the screw must rotate at a relativelyconstant speed.4 The advantages of having the screw move ata constant rotational speed are two-fold. First, consistent gasdosing is easil
42、y realized because the pressure fluctuations inside the extrusion barrel are minimized. Second, maintaining a high pressure guarantees thedissolution of the injected gas into the polymer melt. A uniform polymer/gas mixture, in which the gas has been completely (or substantially) dissolved, that has
43、aconstant gas-to-polymer weight ratio provides the basis for improved uniform, fine-celled foam structuresA gear pump is an essential part of the improved process because it provides a constant volume flow rate for the polymer gas mixture; the pump thereby controls the pressure in the extrusion barr
44、el and allows a consistent polymer-to-gas weightratio to be maintained.4 For viscous polymer melts, the pressure in the extrusion barrel is relatively constant because of thepositive displacement of the gear pump. Because the gas flow rate depends significantly on the barrel pressure, a constant gas
45、flow rate can be obtained by maintaining a constant pressure in the extrusion barrel. The flow rate of the polymer/gas mixturecan be controlled by varying the rotational speed of the gear pump. By independently controlling the flow rates of both thegas and the polymer/gas mixture, the polymer flow r
46、ate can also be controlled. Thus, both a consistent polymer-to-gas weightratio and a uniform polymer/gas mixture can be easily achieved with a gear pump. These advantages could not be easily achieved with a shut-off or nonreturnable check valve alone. The rationale behind having outfitted the new mo
47、del with an additional accumulator derives from the need to accommodate the mixture during each cycles injection period so that the screw can rotate at a constant speed and the gas can be continuously injected into the melt.4 The constantly rotating screw represents a significant difference from all
48、 previous structural foam molding technologies that are based on the low-pressure preplasticating-type system. Once the pressure in the extrusion barrel is relatively stable, it becomes easier to control the flow rate of the injected gas into the polymer, and the gas can be more uniformly dispersed
49、into the melt. When a consistent gas-to-polymer weight ratio is achieved,the injected N2, which has a very low solubility, can dissolve completely if a sufficiently high pressure is maintained in boththe extrusion barrel and the accumulators. A “sufficiently high pressure” means that the melt pressu
50、re is much higher than the solubility pressure for the given amount of gas injected into the polymer melt. In addition, maintaining a -1.0% N2 in high-density polyethylene (HDPE) at 200 °C17 is low compared to the pressure limit of the existing low-pressure preplasticating-type structural foam
51、molding machines (maximum allowable pressure 3000 psi),a sufficiently high pressure can easily be maintained in the advanced structural foam molding machines,Although the advanced structural molding machine features modifications that allow for the complete dissolution of gas intoa polymer melt whil
52、e a constant gas-to-polymer weight ratio is maintained,4,5 this system design does not automatically guarantee the production of high-quality foams. To produce high quality foams with uniform cell structures and a large voidfraction, a set of overall conditions must be satisfied; these conditions ar
53、e described below.In addition to the formation of a foamable polymer/gas mixture with a uniform and constant polymer/gasweight ratio, the mold geometry including the gate shape should be designed properly.Once the hardware machinery has been properly designed and constructed, appropriate material co
54、mpositions should be selected and fed into the system. Both the molecular weight and structure variation of the plastic resin and the type and content of added materials, such as the nucleating agent, the blowing agent, and any other additives or fillers, should be prudently selected because all of
55、these materials and their compositions affect the cell nucleation and growth behaviors.Results And Discussion. It should be also noted that the measured void fractions inFigure4 were higher than the set void fraction. If the void fractions of the sprue, runner, and injection-molded parts had been un
56、iform, the measured void fraction from the molded part would be the same as the set void fraction. However, in reality, the void fractions of the spure and runner were observed to be lower than that of injection-molded part. This must have been caused by the higher pressure in the sprue and runner c
57、ompared to the pressure in the mold cavity. Consequently, the measured void fraction of the injection-molded parts became higher than the set void fraction Some large bubbles were observed in the foam, however, when 0.5 wt % N2 was used. There might have been severalreasons for this, as discussed ea
58、rlier, but most likely, a content of 0.5 wt % was too high because of N2s low solubilityThe cavity pressure of a foaming mold has a significant influence on cell nucleation. If the cavity pressure is lower than the solubility pressure (or the threshold pressure22) of the injected gas and if the pres
59、sure before the gate is high enough, cell nucleation occurs at the gate with a high pressure drop rate. In such cases, the cell density will be high. However, if the cavity pressure is higher than the solubility pressure (or the threshold pressure), cell nucleation occurs along the mold cavity with a low pressure drop rate, resulting in a low cell density. Therefore, it is desirable to induce cell nucleation at the gate by re
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 佳木斯職業(yè)學(xué)院《熱工與熱機》2023-2024學(xué)年第二學(xué)期期末試卷
- 東北師范大學(xué)《液壓與氣動》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京語言大學(xué)《水資源利用》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江工業(yè)大學(xué)之江學(xué)院《生態(tài)環(huán)境保護基礎(chǔ)(三)》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江越秀外國語學(xué)院《市場營銷學(xué)概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 中央美術(shù)學(xué)院《課堂教學(xué)技能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 石家莊理工職業(yè)學(xué)院《災(zāi)害衛(wèi)生學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 長垣烹飪職業(yè)技術(shù)學(xué)院《電工及電子學(xué)(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 益陽醫(yī)學(xué)高等專科學(xué)?!堕_發(fā)技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津體育職業(yè)學(xué)院《動力電池及能量管理技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 16.2《登泰山記》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊-9
- 【課件】如何保障我國未來的能源安全
- 2024年深圳科技企業(yè)員工聘用合同3篇
- 結(jié)腸術(shù)后恢復(fù)護理
- 綜藝節(jié)目贊助合同(2024年版)
- 道路運輸企業(yè)主要負責(zé)人和安全生產(chǎn)管理人員安全考核習(xí)題庫(附參考答案)
- 2024東莞市勞動局制定的勞動合同范本
- 2024年四川省公務(wù)員考試《行測》真題及答案解析
- 上海市幼兒園幼小銜接活動指導(dǎo)意見(修訂稿)
- 公務(wù)員2010年國考《申論》真題卷及答案(地市級)
- 2021年6月大學(xué)英語四級考試真題及解析(全三套)
評論
0/150
提交評論