版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、高頻電子線路實驗教學(xué)大綱高頻電子線路實驗教學(xué)大綱2OutlineIntroductionSingle carrier single antenna systemsRadio frequency interference modelingEstimation of interference model parametersFiltering/detectionMulti-input multi-output (MIMO) single carrier systemsCo-channel interference modelingConclusionsFuture work2高頻電子線路實驗教學(xué)大
2、綱3Impulsive NoiseAlmost instantaneous (impulse-like) phenomenon Unwanted “clicks” and “pops” in an audio recordingNon-Gaussian statisticsModels electromagnetic interference through conduction as well as induction (via radiation)Example sourcesStopping and starting of electrical devicesClocks and har
3、monicsCommunication transmissionTalk focuses on modeling asynchronous non-periodic noise高頻電子線路實驗教學(xué)大綱4Radio Frequency InterferenceElectromagnetic interference from radiationLimits wireless communication performanceApplications of RFI modelingSense and mitigate strategies for coexistenceof wireless ne
4、tworks and servicesSense and avoid strategies for cognitive radioWe focus on sense and mitigate strategies for wireless receivers embedded in notebooksPlatform noise from users computer subsystemsCo-channel interference from other in-band wireless networks and services高頻電子線路實驗教學(xué)大綱5Computational Plat
5、form Noise5ObjectivesDevelop offline methods to improve communication performance in presence of computer platform RFIDevelop adaptive online algorithms for these methodsApproachStatistical modeling of RFIFiltering/detection based on estimated model parametersWithin computing platforms, wireless tra
6、nsceivers experience radio frequency interference from clocks and bussesWe will use noise and interference interchangeablyBackup高頻電子線路實驗教學(xué)大綱6Impact of RFI6Impact of LCD noise on throughput for an IEEE 802.11g embedded wireless receiver Shi, Bettner, Chinn, Slattery & Dong, 2006BackupBackup高頻電子線路實驗教學(xué)
7、大綱7Statistical Modeling of RFI7Radio frequency interferenceSum of independent radiation eventsPredominantly non-Gaussian impulsive statisticsKey statistical-physical modelsMiddleton Class A, B, C modelsIndependent of physical conditions (canonical)Sum of independent Gaussian and Poisson interference
8、Symmetric Alpha Stable modelsApproximation of Middleton Class B modelBackupBackup高頻電子線路實驗教學(xué)大綱8Assumptions for RFI Modeling8 Key assumptions for Middleton and Alpha Stable modelsMiddleton, 1977Furutsu & Ishida, 1961 Infinitely many potential interfering sources with same effective radiation power Pow
9、er law propagation loss Poisson field of interferers with uniform intensity lPr(number of interferers = M |area R) Poisson(M; lR) Uniformly distributed emission times Temporally independent (at each sample time) Limitations Alpha Stable models do not include thermal noise Temporal dependence may exi
10、st高頻電子線路實驗教學(xué)大綱9Our Contributions9Computer Platform Noise ModellingEvaluate fit of measured RFI data to noise models Middleton Class A model Symmetric Alpha StableParameter EstimationEvaluate estimation accuracy vs complexity tradeoffsFiltering / DetectionEvaluate communication performance vs complex
11、ity tradeoffs Middleton Class A: Correlation receiver, Wiener filtering, and Bayesian detector Symmetric Alpha Stable: Myriad filtering, hole punching, and Bayesian detector Mitigation of computational platform noise in single carrier, single antenna systems Nassar, Gulati, DeYoung, Evans & Tinsley,
12、 ICASSP 2008, JSPS 2009高頻電子線路實驗教學(xué)大綱10Middleton Class A model10Probability Density Function12!)(220222AmwhereemAezfmzmmmAZm-10-5051000.10.20.30.40.50.60.7Noise amplitudeProbability density functionPDF for A, = 0.8 AParameterDescriptionRangeOverlap Index. Product of average number of emissions per sec
13、ond and mean duration of typical emissionA 10-2, 1Gaussian Factor. Ratio of second-order moment of Gaussian component to that of non-Gaussian component 10-6, 1高頻電子線路實驗教學(xué)大綱11Symmetric Alpha Stable Model11Characteristic Function Closed-form PDF expression only for = 1 (Cauchy), = 2 (Gaussian), = 1/2 (
14、Levy), = 0 (not very useful) Approximate PDF using inverse transform of power series expansion Second-order moments do not exist for do not exist|)(jePDF for = 1.5, = 0, = 10-5005000.010.020.030.040.050.060.07Noise amplitudeProbability density functionParameterDescriptionRangeCharacteristic Exponent
15、. Amount of impulsivenessLocalization. Analogous to meanDispersion. Analogous to variance2,0),(),0(BackupBackup高頻電子線路實驗教學(xué)大綱12Example Power Spectral DensitiesMiddleton Class ASymmetric Alpha Stable00.10.20.30.40.50.60.70.80.91-10-8-6-4-20246810FrequencyPower Spectrum Magnitude (dB)Power Spectal Densi
16、ty of Class A noise, A = 0.15, = 0.100.10.20.30.40.50.60.70.80.91-10-8-6-4-20246810FrequencyPower Spectrum Magnitude (dB)Power Spectal Density of S S noise, = 1.5, = 10, = 0Overlap Index (AGaussian Factor () Characteristic Exponent ()Localization () = 0Dispersion () = 10Simulated Densities高頻電子線路實驗教學(xué)
17、大綱13Estimation of Noise Model Parameters13Middleton Class A modelBased on Expectation Maximization Zabin & Poor, 1991Find roots of second and fourth order polynomials at each iterationAdvantage: Small sample size is required (1000 samples)Disadvantage: Iterative algorithm, computationally intensiveS
18、ymmetric Alpha Stable ModelBased on Extreme Order Statistics Tsihrintzis & Nikias, 1996Parameter estimators require computations similar to mean and standard deviation computationsAdvantage:Fast / computationally efficient (non-iterative)Disadvantage: Requires large set of data samples (10000 sample
19、s)BackupBackup高頻電子線路實驗教學(xué)大綱1414Wireless Networking and Communications GroupResults on Measured RFI Data1425 radiated computer platform RFI data sets from Intel50,000 samples taken at 100 MSPSEstimated Parameters for Data Set #18Symmetric Alpha Stable ModelLocalization ()0.0065KL Divergence 0.0308Char
20、acteristic exp. ()1.4329Dispersion ()0.2701Middleton Class A ModelOverlap Index (A)0.0854KL Divergence0.0494Gaussian Factor ()0.6231Gaussian ModelMean ()0KL Divergence0.1577Variance (2) 1KL Divergence: Kullback-Leibler divergence-6-4-2024600.10.20.30.40.50.60.70.80.9Noise amplitudeProbability Densit
21、y Function Measured PDFEst. -Stable PDFEst. Class A PDFEst. Gaussian PDFMeasured PDF Gaussian PDF Middleton Class A PDF Alpha Stable PDF 高頻電子線路實驗教學(xué)大綱15051015202500.050.10.150.20.25Measurement Set NumberKullback-Leibler (KL) Divergence Estimated Alpha Stable modelEstimated Class A modelEstimated Gaus
22、sian model15Results on Measured RFI DataBest fit for 25 data sets under different platform RFI conditionsKL divergence plotted for three candidate distributions vs. data set numberSmaller KL value means closer fitGaussianClass AAlpha Stable高頻電子線路實驗教學(xué)大綱16Video over Impulsive ChannelsVideo demonstrati
23、on for MPEG II video stream 10.2 MB compressed stream from camera (142 MB uncompressed) Compressed over additive impulsive noise channel Binary phase shift keyingRaised cosine pulse10 samples/symbol10 symbols/pulse length Composite of transmitted and received MPEG II video streams Shows degradation
24、of video quality over impulsive channels with standard receivers (based on Gaussian noise assumption)Wireless Networking and Communications Group16Additive Class A Noise ValueOverlap index (A)0.35Gaussian factor ()0.001SNR19 dB高頻電子線路實驗教學(xué)大綱17Filtering and Detection17Pulse ShapingPre-FilteringMatched
25、FilterDetection RuleImpulsive NoiseMiddleton Class A noiseSymmetric Alpha Stable noiseFilteringWiener Filtering (Linear)DetectionCorrelation Receiver (Linear)Bayesian DetectorSpaulding & Middleton, 1977Small Signal Approximation to Bayesian detectorSpaulding & Middleton, 1977FilteringMyriad Filterin
26、gOptimal Myriad Gonzalez & Arce, 2001Selection MyriadHole Punching Ambike et al., 1994DetectionCorrelation Receiver (Linear)MAP approximationKuruoglu, 1998BackupBackupBackupBackupBackupAssumptionMultiple samples of the received signal are available N Path Diversity Miller, 1972 Oversampling by N Mid
27、dleton, 1977Backup高頻電子線路實驗教學(xué)大綱18Results: Class A Detection18Pulse shapeRaised cosine10 samples per symbol10 symbols per pulseChannelA = 0.35 = 0.5 10-3MemorylessMethodComp. ComplexityDetection Perform.Correl.LowLowWienerMediumLowBayesian S.S. Approx.MediumHighBayesianHighHigh-35-30-25-20-15-10-50510
28、1510-510-410-310-210-1100SNRBit Error Rate (BER) Correlation ReceiverWiener FilteringBayesian DetectionSmall Signal ApproximationCommunication PerformanceBinary Phase Shift KeyingBackupBackupBackup高頻電子線路實驗教學(xué)大綱19Results: Alpha Stable Detection19Use dispersion parameter in place of noise variance to g
29、eneralize SNRMethodComp. ComplexityDetection Perform.Hole PunchingLowMediumSelection MyriadLowMediumMAP Approx.MediumHighOptimal MyriadHigh MediumBackupBackup-10-50510152010-210-1100Generalized SNR (in dB)Bit Error Rate (BER) Matched FilterHole PunchingMAPMyriadCommunication PerformanceSame transmit
30、ter settings as previous slideBackupcBackupBackupBackup高頻電子線路實驗教學(xué)大綱20Video over Impulsive Channels #2Video demonstration for MPEG II video stream revisited 5.9 MB compressed stream from camera (124 MB uncompressed) Compressed over additive impulsive noise channel Binary phase shift keyingRaised cosi
31、ne pulse10 samples/symbol10 symbols/pulse length Composite of transmitted video stream, video stream from a correlation receiver based on Gaussian noise assumption, and video stream for a Bayesian receiver tuned to impulsive noiseWireless Networking and Communications Group20Additive Class A Noise V
32、alueOverlap index (A)0.35Gaussian factor ()0.001SNR19 dB高頻電子線路實驗教學(xué)大綱21Video over Impulsive Channels #2Structural similarity measure Wang, Bovik, Sheikh & Simoncelli, 2004Score is 0,1 where higher means better video qualityFrame numberBit error rates for 50 million bits sent:6 x 10-6 for correlation
33、receiver0 for RFI mitigating receiver (Bayesian)高頻電子線路實驗教學(xué)大綱22Extensions to MIMO systems22Radio Frequency Interference Modeling and Receiver Design for MIMO systemsRFI ModelSpatial Corr.Physical ModelCommentsMiddleton Class ANoYesUni-variate modelAssume independent or uncorrelated noise for multiple
34、 antennasReceiver design:Gao & Tepedelenlioglu, 2007 Space-Time CodingLi, Wang & Zhou, 2004 Performance degradation in receiversWeighted Mixture of Gaussian DensitiesYesNoNot derived based on physical principlesReceiver design:Blum et al., 1997 Adaptive Receiver DesignBivariate Middleton Class AMcDo
35、nald & Blum, 1997YesYesExtensions of Class A model to two-antenna systemsBackup高頻電子線路實驗教學(xué)大綱23Our Contributions23RFI Modeling Evaluated fit of measured RFI data to the bivariate Middleton Class A model McDonald & Blum, 1997 Includes noise correlation between two antennas Parameter Estimation Derived
36、parameter estimation algorithm based on the method of moments (sixth order moments)Performance Analysis Demonstrated communication performance degradation of conventional receivers in presence of RFI Bounds on communication performanceChopra , Gulati, Evans, Tinsley, and Sreerama, ICASSP 2009Receive
37、r Design Derived Maximum Likelihood (ML) receiver Derived two sub-optimal ML receivers with reduced complexity2 x 2 MIMO receiver design in the presence of RFIGulati, Chopra, Heath, Evans, Tinsley & Lin, Globecom 2008BackupBackupBackup高頻電子線路實驗教學(xué)大綱24-10-50510152010-310-210-1SNR in dBVector Symbol Err
38、or Rate Optimal ML Receiver (for Gaussian noise)Optimal ML Receiver (for Middleton Class A)Sub-Optimal ML Receiver (Four-Piece)Sub-Optimal ML Receiver (Two-Piece)Results: RFI Mitigation in 2 x 2 MIMO 24ANoise CharacteristicImprove-ment0.01Highly Impulsive15 dB0.1Moderately Impulsive8 dB1Nearly Gauss
39、ian0.5 dBImprovement in communication performance over conventional Gaussian ML receiver at symbol error rate of 10-2Communication Performance (A = 0.1, 1= 0.01, 2= 0.1, k = 0.4)高頻電子線路實驗教學(xué)大綱25Results: RFI Mitigation in 2 x 2 MIMO 25Complexity AnalysisReceiverQuadratic FormsExponentialComparisonsGaus
40、sian MLM200Optimal ML2M22M20Sub-optimal ML (Four-Piece)2M202M2Sub-optimal ML (Two-Piece)2M20M2Complexity Analysis for decoding M-level QAM modulated signalCommunication Performance (A = 0.1, 1= 0.01, 2= 0.1, k = 0.4)-10-50510152010-310-210-1SNR in dBVector Symbol Error Rate Optimal ML Receiver (for
41、Gaussian noise)Optimal ML Receiver (for Middleton Class A)Sub-Optimal ML Receiver (Four-Piece)Sub-Optimal ML Receiver (Two-Piece)高頻電子線路實驗教學(xué)大綱2626Co-Channel Interference ModelingWireless Networking and Communications Group26Region of interferer locations determines interference model Gulati, Chopra,
42、Evans & Tinsley, Globecom 2009Symmetric Alpha StableMiddleton Class A高頻電子線路實驗教學(xué)大綱2727Co-Channel Interference ModelingPropose unified framework to derive narrowband interference models for ad-hoc and cellular network environments Key result: tail probabilities (one minus cumulative distribution funct
43、ion)Wireless Networking and Communications Group27Case 1: Ad-hoc networkCase 3-a: Cellular network (mobile user)00.10.20.30.40.50.60.70.80.9110-410-310-210-1100Interference threshold (a)P ( Interfernce amplitude a ) Simulated Symmetric Alpha Stable00.10.20.30.40.50.60.70.80.9110-1010-5100Interferenc
44、e threshold (a)P ( Interference amplitude a) SimulatedSymmetric Alpha StableGaussianMiddleton Class A高頻電子線路實驗教學(xué)大綱28Conclusions28Radio Frequency Interference from computing platformAffects wireless data communication transceiversModels include Middleton and alpha stable distributionsRFI mitigation ca
45、n improve communication performanceSingle carrier, single antenna systemsLinear and non-linear filtering/detection methods exploredSingle carrier, multiple antenna systemsOptimal and sub-optimal receivers designed Bounds on communication performance in presence of RFIResults extend to co-channel int
46、erference modeling 高頻電子線路實驗教學(xué)大綱29RFI Mitigation Toolbox in MATLAB Provides a simulation environment forRFI generationParameter estimation algorithmsFiltering and detection methodsDemos for communication performance analysisLatest Toolbox ReleaseVersion 1.4 beta, Dec. 14th 200929Snapshot of a demo高頻電
47、子線路實驗教學(xué)大綱30Publications and Presentations30 Journal and conference papersM. Nassar, K. Gulati, M. R. DeYoung, B. L. Evans and K. R. Tinsley, “Mitigating Near-Field Interference in Laptop Embedded Wireless Transceivers”, J. of Signal Proc. Systems, Mar 2009, invited paper. M. Nassar, K. Gulati, A. K.
48、 Sujeeth, N. Aghasadeghi, B. L. Evans and K. R. Tinsley, “Mitigating Near-field Interference in Laptop Embedded Wireless Transceivers”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Mar. 30-Apr. 4, 2008, Las Vegas, NV USA.K. Gulati, A. Chopra, R. W. Heath Jr., B. L. Evans, K. R. Tins
49、ley, and X. E. Lin, “MIMO Receiver Design in the Presence of Radio Frequency Interference”, Proc. IEEE Int. Global Communications Conf., Nov. 30-Dec. 4th, 2008, New Orleans, LA USA.A. Chopra, K. Gulati, B. L. Evans, K. R. Tinsley, and C. Sreerama, “Performance Bounds of MIMO Receivers in the Presenc
50、e of Radio Frequency Interference”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Apr. 19-24, 2009, Taipei, Taiwan, accepted. K. Gulati, A. Chopra, B. L. Evans and K. R. Tinsley, “Statistical Modeling of Co-Channel Interference”, Proc. IEEE Int. Global Communications Conf., Nov. 30-D
51、ec. 4, 2009, Honolulu, HI USA, accepted.K. Gulati, A. Chopra, B. L. Evans and K. R. Tinsley, “Statistical Modeling of Co-Channel Interference in a Field of Poisson and Poisson Distributed Interferers”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Mar. 15-19, 2010, Dallas, TX USA. Pr
52、oject Web site高頻電子線路實驗教學(xué)大綱31Future Work31Extend RFI modeling forAdjacent channel interferenceMulti-antenna systemsTemporally correlated interferenceMulti-input multi-output (MIMO) single carrier systemsRFI modeling and receiver designMulticarrier communication systemsCoding schemes resilient to RFIS
53、ystem level techniques to reduce computational platform generated RFIBackup高頻電子線路實驗教學(xué)大綱3232Thank You.Questions ?高頻電子線路實驗教學(xué)大綱33References33RFI Modeling1 D. Middleton, “Non-Gaussian noise models in signal processing for telecommunications: New methods and results for Class A and Class B noise models”,
54、 IEEE Trans. Info. Theory, vol. 45, no. 4, pp. 1129-1149, May 1999.2 K.F. McDonald and R.S. Blum. “A physically-based impulsive noise model for array observations”, Proc. IEEE Asilomar Conference on Signals, Systems& Computers, vol 1, 2-5 Nov. 1997.3 K. Furutsu and T. Ishida, “On the theory of ampli
55、tude distributions of impulsive random noise,” J. Appl. Phys., vol. 32, no. 7, pp. 12061221, 1961.4 J. Ilow and D . Hatzinakos, “Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers”, IEEE transactions on signal processing, vol. 46, no. 6, pp. 1601-1611, 1998.Paramete
56、r Estimation5 S. M. Zabin and H. V. Poor, “Efficient estimation of Class A noise parameters via the EM Expectation-Maximization algorithms”, IEEE Trans. Info. Theory, vol. 37, no. 1, pp. 60-72, Jan. 19916 G. A. Tsihrintzis and C. L. Nikias, Fast estimation of the parameters of alpha-stable impulsive
57、 interference, IEEE Trans. Signal Proc., vol. 44, Issue 6, pp. 1492-1503, Jun. 1996RFI Measurements and Impact7 J. Shi, A. Bettner, G. Chinn, K. Slattery and X. Dong, A study of platform EMI from LCD panels - impact on wireless, root causes and mitigation methods,“ IEEE International Symposium on El
58、ectromagnetic Compatibility, vol.3, no., pp. 626-631, 14-18 Aug. 2006高頻電子線路實驗教學(xué)大綱34References (cont)34Filtering and Detection8 A. Spaulding and D. Middleton, “Optimum Reception in an Impulsive Interference Environment-Part I: Coherent Detection”, IEEE Trans. Comm., vol. 25, no. 9, Sep. 19779 A. Spau
59、lding and D. Middleton, “Optimum Reception in an Impulsive Interference Environment Part II: Incoherent Detection”, IEEE Trans. Comm., vol. 25, no. 9, Sep. 197710 J.G. Gonzalez and G.R. Arce, “Optimality of the Myriad Filter in Practical Impulsive-Noise Environments”, IEEE Trans. on Signal Processin
60、g, vol 49, no. 2, Feb 200111 S. Ambike, J. Ilow, and D. Hatzinakos, “Detection for binary transmission in a mixture of Gaussian noise and impulsive noise modelled as an alpha-stable process,” IEEE Signal Processing Letters, vol. 1, pp. 5557, Mar. 1994.12 J. G. Gonzalez and G. R. Arce, “Optimality of
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 英語 漫畫 課件
- 《做功了嗎》課件
- 手術(shù)總結(jié) 課件
- 西京學(xué)院《英美文學(xué)導(dǎo)讀》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《書法》2021-2022學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《機器學(xué)習(xí)》2021-2022學(xué)年期末試卷
- 西京學(xué)院《工程造價軟件應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年高考語文試題及參考答案
- 西華師范大學(xué)《智能計算》2022-2023學(xué)年期末試卷
- 西華師范大學(xué)《寫實油畫》2023-2024學(xué)年第一學(xué)期期末試卷
- 口腔新店開業(yè)盛典活動策劃案
- QGDW-11513.1-2022-變電站智能機器人巡檢系統(tǒng)技術(shù)規(guī)范第1部分
- 幼兒園繪本故事:《袁隆平》 課件
- GB∕T 19492-2020 油氣礦產(chǎn)資源儲量分類
- 人教版七年級上冊 句型轉(zhuǎn)換專項練習(xí)(三)
- 建設(shè)工程資料用表(全套)
- 中考物理之透鏡作圖(含解析)
- 部編版四年級道德與法治上冊教學(xué)計劃表及全一冊教案(共12節(jié))
- DB33∕T 1251-2021 燃氣用戶設(shè)施安全檢查標(biāo)準(zhǔn)
- 車輛評估報告格式(共7頁)
- 江都特校培智部八年級初二語文期終試卷(A)
評論
0/150
提交評論