版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是( )A甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B乙的數(shù)據(jù)分析素養(yǎng)優(yōu)
2、于數(shù)學建模素養(yǎng)C甲的六大素養(yǎng)整體水平優(yōu)于乙D甲的六大素養(yǎng)中數(shù)學運算最強2第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為( )ABCD3偶函數(shù)關于點對稱,當時,求( )ABCD4某三棱錐的三視圖如圖所示,則該三棱錐的體積為ABC2D5以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是( )
3、(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B4月份僅有三個城市居民消費價格指數(shù)超過102C四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢6已知三點A(1,0),B(0, ),C(2,),則ABC外接圓的圓心到原點的距離為()ABCD7函數(shù)f(x)sin(wx)(w0,)的最小正周期是,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關于直線x對稱,則函數(shù)f(x)的解析式為( )A
4、f(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2x)Df(x)sin(2x)8平行四邊形中,已知,點、分別滿足,且,則向量在上的投影為( )A2BCD9某部隊在一次軍演中要先后執(zhí)行六項不同的任務,要求是:任務A必須排在前三項執(zhí)行,且執(zhí)行任務A之后需立即執(zhí)行任務E,任務B、任務C不能相鄰,則不同的執(zhí)行方案共有( )A36種B44種C48種D54種10德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(
5、1736年)開始,歷時近30年,證明了包括這個公式在內的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有割圓密率捷法一書,為我國用級數(shù)計算開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于的級數(shù)展開式”計算的近似值(其中P表示的近似值),若輸入,則輸出的結果是( )ABCD11已知平面平面,且是正方形,在正方形內部有一點,滿足與平面所成的角相等,則點的軌跡長度為( )AB16CD12已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件二、填空題
6、:本題共4小題,每小題5分,共20分。13已知函數(shù),若方程的解為,(),則_;_14定義在R上的函數(shù)滿足:對任意的,都有;當時,則函數(shù)的解析式可以是_.15已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_16假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有_種不同的支付方式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),.(1)當時,求函數(shù)在點處的切線方程;比較與的大小; (2)當時,若對時,且有唯一零點,證明:1
7、8(12分) 2018石家莊一檢已知函數(shù)(1)若,求函數(shù)的圖像在點處的切線方程;(2)若函數(shù)有兩個極值點,且,求證:19(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.20(12分)如圖1,四邊形是邊長為2的菱形,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.21(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,若點為橢圓的上
8、頂點,原點為的垂心,求線段的長;若原點為的重心,求原點到直線距離的最小值.22(10分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列定義隨機變量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X來衡量家長對小孩飲食習慣的了解程度(1)若參與游戲的
9、家長對小孩的飲食習慣完全不了解()求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;()求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X4,請判斷這位家長對小孩飲食習慣是否了解,說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建
10、模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.2B【解析】根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.3D【解析】推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關于點對稱,則,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,則.故選:D.【
11、點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.4A【解析】 由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為 高為的三棱錐,所以三棱錐的體積為,故選A5D【解析】采用逐一驗證法,根據(jù)圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【點睛】
12、本題考查圖表的認識,審清題意,細心觀察,屬基礎題.6B【解析】選B.考點:圓心坐標7D【解析】由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到 ,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數(shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應的函數(shù)解析式為,由此函數(shù)圖像關于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)
13、三角函數(shù)的性質求解是解答的關鍵,著重考查了推理與運算能力.8C【解析】將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.9B【解析】分三種情況,任務A排在第一位時,E排在第二位;任務A排在第二位時,E排在第三位;任務A排在第三位時,E排在第四位,結合任務B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案【詳解】六項不同的任務分別為A、B、C、D、E、F,如果任務A排在第一位時,E排在第二位,剩下四個位置,先排好D、F,再在D、F之間的3個空位中插入B、C,
14、此時共有排列方法:;如果任務A排在第二位時,E排在第三位,則B,C可能分別在A、E的兩側,排列方法有,可能都在A、E的右側,排列方法有; 如果任務A排在第三位時,E排在第四位,則B,C分別在A、E的兩側;所以不同的執(zhí)行方案共有種【點睛】本題考查了排列組合問題,考查了學生的邏輯推理能力,屬于中檔題10B【解析】執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,
15、得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.11C【解析】根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,設(點在第一象限內),由得,即,化簡得,由于點在第一象限內,所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯
16、推理能力,考查數(shù)形結合的數(shù)學思想方法,屬于難題.12C【解析】根據(jù)直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決
17、本題的關鍵二、填空題:本題共4小題,每小題5分,共20分。13 【解析】求出在 上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得 因為,所以 關于 對稱.則.由,則由可知,又因為 ,所以,則,即故答案為: ;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導公式,考查了同角三角函數(shù)的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令 進行求解.14(或,答案不唯一)【解析】由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,知或等,答案不唯一.故答案為:(或
18、,答案不唯一).【點睛】本題考查抽象函數(shù)的性質,涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.1560【解析】根據(jù)題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據(jù)計算求解即可.【詳解】如圖所示:設雙曲線的半焦距為.因為,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據(jù)雙曲線的定義表示各邊的長度,再在合適的三
19、角形里面利用余弦定理求得基本量的關系.屬于難題.161【解析】按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可【詳解】9元的支付有兩種情況,或者,當9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;當9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種故答案為:1【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題做題時注意分類做到不重不漏,分步做到步驟完整三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17
20、(1)見解析,見解析;(2)見解析【解析】(1)把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;令,利用導數(shù)研究函數(shù)的單調性,可得當時,;當時,;當時,(2)由題意,在上有唯一零點利用導數(shù)可得當時,在上單調遞減,當,時,在,上單調遞增,得到由在恒成立,且有唯一解,可得,得,即令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得【詳解】解:(1)當時,又,切線方程為,即;令,則,在上單調遞減又,當時,即;當時,即;當時,即證明:(2)由題意,而,令,解得,在上有唯一零點當時,在上單調遞減,當,時,在,上單調遞增在恒成立,且有唯一解,
21、即,消去,得,即令,則,在上恒成立,在上單調遞減,又, ,在上單調遞增,【點睛】本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調性,考查邏輯思維能力與推理論證能力,屬難題18(1) (2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,進而再求導可得,結合函數(shù)的單調性可得,從而得證.試題解析:(1)由已知條件,當時,當時,所以所求切線方程為 (2)由已知條件可得有兩個相異實根,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數(shù)有兩個極值點,當變化時,
22、的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區(qū)間上單調遞增,另解:由已知可得,則,令,則,可知函數(shù)在單調遞增,在單調遞減,若有兩個根,則可得,當時, ,所以在區(qū)間上單調遞增,所以19(1);(2).【解析】(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經(jīng)過圓心.直線l
23、的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.20(1)證明見解析(2)【解析】(1)由題意可證得,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,所以.由(1
24、)知,平面,且,所以三棱錐的體積.在中,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,在中,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:等體積法;作(找)出點到平面的垂線段,進行計算即可.21;.【解析】根據(jù)題意列出方程組求解即可;由
25、原點為的垂心可得,軸,設,則,根據(jù)求出線段的長;設中點為,直線與橢圓交于,兩點,為的重心,則,設:,則,當斜率不存在時,則到直線的距離為1,由,則,得出,根據(jù)求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;由題意知:,故軸,設,則, ,解得:或,不重合,故,故;設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,則,則,則:,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結合運用向量,韋達定理和點到直線的距離的知識,屬于難題.22(1)()()分布表見解析;(2)理由見解析【解析】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年高校博士研究生教師職務聘任合同范本3篇
- 二零二五年度跨境電子商務代理銷售合同6篇
- 二零二五年空壓機行業(yè)市場推廣與銷售合同3篇
- 二零二五年度儲煤場煤炭儲備與智能物流服務合同3篇
- 2024版土地貸款反擔保合同范本3篇
- 二零二五年度特殊環(huán)境搬遷及環(huán)保措施合同3篇
- 二零二五版跨境擔保居間交易合同細則2篇
- 展會國際物流合同(2篇)
- 二零二五版代駕服務租賃合同范本(含車輛使用限制條款)2篇
- 二零二五版快遞駕駛員職業(yè)發(fā)展規(guī)劃與聘用合同3篇
- 人教版八年級上學期物理期末復習(壓軸60題40大考點)
- 企業(yè)環(huán)保知識培訓課件
- 2024年度管理評審報告
- 暨南大學《微觀經(jīng)濟學》2023-2024學年第一學期期末試卷
- 醫(yī)藥銷售合規(guī)培訓
- DB51-T 5038-2018 四川省地面工程施工工藝標準
- 三年級數(shù)學(上)計算題專項練習附答案
- GB/T 12723-2024單位產品能源消耗限額編制通則
- 2024年廣東省深圳市中考英語試題含解析
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
評論
0/150
提交評論