




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則( )A3BCD2一個袋中放有大小、
2、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則( )A,B,C,D,3若實數(shù)滿足不等式組則的最小值等于( )ABCD4如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是( )A甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1035已知命題p:“”是“”的充要條件;,則( )A為真命題B為真命題C為真命題D為假命題6已知橢圓+=1(ab0)
3、與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若ABF是直角三角形,則該橢圓的離心率為( )ABCD7下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是( )ABCD8已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為( )ABCD9已知,若方程有唯一解,則實數(shù)的取值范圍是( )ABCD10幻方最早起源于我國,由正整數(shù)1,2,3,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方定義為階幻方對角線上所有數(shù)的和,如,則( )A55B500C505D505011已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A
4、BCD12已知雙曲線C:1(a0,b0)的焦距為8,一條漸近線方程為,則C為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,則的值為_.143張獎券分別標有特等獎、一等獎和二等獎甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是_15若函數(shù)的圖像與直線的三個相鄰交點的橫坐標分別是,則實數(shù)的值為_16九章算術(shù)第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_人;所合買的物品
5、價格為_元三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知凸邊形的面積為1,邊長,其內(nèi)部一點到邊的距離分別為.求證:.18(12分)如圖1,四邊形為直角梯形,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.19(12分)已知在中,a、b、c分別為角A、B、C的對邊,且(1)求角A的值;(2)若,設(shè)角,周長為y,求的最大值20(12分)三棱柱中,平面平面,點為棱的中點,點為線段上的動點.(1)求證:;(2)若
6、直線與平面所成角為,求二面角的正切值.21(12分)班主任為了對本班學(xué)生的考試成績進行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)(2)如果隨機抽取的7名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:學(xué)生序號1234567數(shù)學(xué)成績60657075858790物理成績70778085908693若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學(xué)成績的線性回歸方程
7、(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)?6分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.768381252622(10分)已知矩形中,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=
8、MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.2B【解析】分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,故,.,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應(yīng)先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型
9、中摸出的球有放回與無放回的區(qū)別.3A【解析】首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以故選:A【點睛】本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題4D【解析】計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以
10、兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.5B【解析】由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題對于命題q,當(dāng),即時,;當(dāng),即時,由,得,無解,因此命題q是假命題所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于中檔題.6A【解析】聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式,解
11、方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,=0,因為,由平面向量垂直的坐標表示可得, 因為,所以a2-c2=ac,兩邊同時除以可得,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7C【解析】結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D
12、:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.8B【解析】根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),而函數(shù)是上的偶函數(shù),故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.9B【解析】求出的表達式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,由,可得,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),解得舍去),則的范圍是,故選:【點睛】本題考查函數(shù)的零點問題,考
13、查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題10C【解析】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,于是故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.11A【解析】求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得故選A【點睛】本題考查雙曲線的簡單性
14、質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計算能力,屬于中檔題對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.12A【解析】由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c8,則c4,又,且a2+b2c2,解得a24,b212.雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】先求,再根據(jù)的范圍求出即可.【詳解】由題可知,
15、故.故答案為:.【點睛】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運算,屬基礎(chǔ)題.14【解析】利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有: 種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是: 故答案為:【點睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.154【解析】由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦
16、型函數(shù)中的167 53 【解析】根據(jù)物品價格不變,可設(shè)共有x人,列出方程求解即可【詳解】設(shè)共有人,由題意知 ,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學(xué)文化及一元一次方程的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17證明見解析【解析】由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因為凸邊形的面積為1,所以,所以(由柯西不等式得)(由均值不等式得)【點睛】本題考查利用柯西不等式、基本不等式證明不等式的問題,考查學(xué)生對不等式靈活運用的能力,是一道容易題.18(1)證明見解析;(2)存在點是線段的中點,
17、使得直線與平面所成角的正弦值為.【解析】(1)在直角梯形中,根據(jù),得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標系:假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,因此為等邊三角形,從而,又,由余弦定理得:,即,且折疊后與位置關(guān)系不變,又平面平面,且平面平面.平面,平面,平面平面.(2)為等邊三角形,為的中點,又平面平面,且平面平面,平面,取的中點,連結(jié),則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,則,假設(shè)在上存在一點使直線與平面所成角的
18、正弦值為,且,故,又,該平面的法向量為,令得,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問題,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.19(1);(2)【解析】(1)利用正弦定理,結(jié)合題中條件,可以得到,之后應(yīng)用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數(shù)的最值求解即可.【詳解】(1)由已知可得,結(jié)合正弦定理可得,又,(2)由,及正弦定理得,故,即,由,得,當(dāng),即時,【點睛】該題主要考查的是有關(guān)解三角形的問題,解題的關(guān)鍵是掌握正余弦定理,屬于簡單題目.20(1)見解
19、析;(2)【解析】(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設(shè)點,由得:,即,點,平面的一個法向量,又,設(shè)平面的一個法向量為,則,令,則平面的一個法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化. 空間中的角的計算,可以建立空間直角坐標系把角的計算歸結(jié)為向量的夾角的計算,也可以構(gòu)建空間角,把角的計算歸結(jié)平面圖形中的角的計算.21(1)不同的樣本的個數(shù)為.(2)分布列見解析,.線性回歸方程為.可預(yù)測該同學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 古建筑修復(fù)造價咨詢措施
- 教師年度專業(yè)發(fā)展計劃
- 部編版六年級語文下冊思維訓(xùn)練計劃
- 酒店前臺客戶投訴處理流程
- 二年級班主任心理健康計劃
- 2025年高三英語寫作提升復(fù)習(xí)計劃
- 初中化學(xué)九年級上冊跨學(xué)科教學(xué)計劃
- 廚房設(shè)備保修保證措施
- 三年級語文上冊教研組課題發(fā)展計劃
- 黑龍江省綏化市綏棱縣林業(yè)局中學(xué)2025屆物理高二第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析
- 軟件質(zhì)量標準與檢驗指南
- DB35T 2192-2024河湖智慧監(jiān)管體系構(gòu)建導(dǎo)則
- 車間洗手消毒管理制度
- 音樂劇排練流程
- 2025年統(tǒng)編版一年級上冊語文識字表字帖
- 2025住院患者身體約束護理
- 杜仲種植可行性研究報告
- 人行道開挖埋管施工方案
- 安全員晉升述職報告
- DB32-T 186-2015建筑消防設(shè)施檢測技術(shù)規(guī)程
- 教育行業(yè)的未來趨勢全方位的性教育服務(wù)模式
評論
0/150
提交評論