三明市2021-2022學年高考考前模擬數(shù)學試題含解析_第1頁
三明市2021-2022學年高考考前模擬數(shù)學試題含解析_第2頁
三明市2021-2022學年高考考前模擬數(shù)學試題含解析_第3頁
三明市2021-2022學年高考考前模擬數(shù)學試題含解析_第4頁
三明市2021-2022學年高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為( )ABCD2設點,不共線,則“”是“”( )A充分不必要條件B必

2、要不充分條件C充分必要條件D既不充分又不必要條件3已知定義在上的偶函數(shù),當時,設,則( )ABCD4已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則的值為( )A2B3C4D5已知函數(shù)是定義在上的偶函數(shù),當時,則,,的大小關系為( )ABCD6某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是( )ABC16D327某三棱錐的三視圖如圖所示,則該三棱錐的體積為( )AB4CD58已知雙曲線滿足以下條件:雙曲線E的右焦點與拋物線的焦點F重合;雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關于原點的對稱點則雙曲線的離

3、心率是( )ABCD9的二項展開式中,的系數(shù)是( )A70B-70C28D-2810已知.給出下列判斷:若,且,則;存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;若在上恰有7個零點,則的取值范圍為;若在上單調遞增,則的取值范圍為.其中,判斷正確的個數(shù)為( )A1B2C3D411已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )ABCD12已知復數(shù),若,則的值為( )A1BCD二、填空題:本題共4小題,每小題5分,共20分。13若變量,滿足約束條件則的最大值為_.14九章算術卷5商功記載一個問題“

4、今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為_.15的展開式中的常數(shù)項為_16若滿足約束條件,則的最大值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.18(12分)已知函數(shù),(1)當時,求不等式的解集;(2)當時,不等式恒成立

5、,求實數(shù)的取值范圍19(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.20(12分)已知函數(shù)(1)若,試討論的單調性;(2)若,實數(shù)為方程的兩不等實根,求證:.21(12分)設函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.22(10分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】利用直線與圓相交求出實數(shù)的取值

6、范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎題.2C【解析】利用向量垂直的表示、向量數(shù)量積的運算,結合充分必要條件的定義判斷即可.【詳解】由于點,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎題.3B【解析】根據(jù)偶函數(shù)性質,可判斷關系;由時,求得導函數(shù),并構造函數(shù),由進而判斷函數(shù)在時的單調性,即可比較大小.【詳解】為定義在上的偶

7、函數(shù),所以所以;當時,則,令則,當時,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質應用,由導函數(shù)性質判斷函數(shù)單調性的應用,根據(jù)單調性比較大小,屬于中檔題.4B【解析】因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關于對稱,由,得,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎題.5C【解析

8、】根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調性可得選項.【詳解】依題意得,當時,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調性比較大小,屬于中檔題.6A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.7B【解析】還原幾何體的直觀圖,可將此三棱錐放入長方體中, 利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.8B【解析】

9、由已知可求出焦點坐標為,可求得冪函數(shù)為,設出切點通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率【詳解】依題意可得,拋物線的焦點為,F(xiàn)關于原點的對稱點;,所以,設,則,解得, ,可得,又,可解得,故雙曲線的離心率是.故選B【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數(shù)解析式,直線的斜率公式及導數(shù)的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.9A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A考點:二項式定理的應用10B【解析】對函數(shù)化簡可得,進而結合三角函數(shù)的最值、周期性、單調性、零點、對稱性及平移

10、變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于,因為,所以,即,故錯誤;對于,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關于軸對稱,則,解得,故對任意整數(shù),所以錯誤;對于,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故正確;對于,因為,且,所以,解得,又,所以,故正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.11D【解析】根據(jù)拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2

11、a丨AF2丨丨AF1丨(1)p,利用雙曲線的離心率公式求得e【詳解】直線F2A的直線方程為:ykx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),設雙曲線方程為:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,離心率e1,故選:D【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題12D【解析】由復數(shù)模的定義可得:,求解關于實數(shù)的方程可得:.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。137【解析】畫出不等式組表示的平面區(qū)域,數(shù)

12、形結合,即可容易求得目標函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結合思想,屬基礎題.143【解析】根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結合方程的思想即可求出結果.15【解析】寫出展開式的通項公式,考慮當?shù)闹笖?shù)為零時,對應的值即為常數(shù)項.【詳解】的展開式通項公式為: ,令

13、,所以,所以常數(shù)項為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數(shù)項對應的取值.164【解析】作出可行域如圖所示:由,解得.目標函數(shù),即為,平移斜率為-1的直線,經過點時,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)【解析】(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中, ,且,四邊形是平行四邊形,同理平面又,故平面平面,又平

14、面平面.(2)是圓的直徑,點是圓上異于、的一點,又平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.18 (1) (2) 【解析】(1)當時,當或時,所以可轉化為,解得,所以不等式的解集為(2)因為,所以,所以,即,即當時,因為,所以,不符合題意當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數(shù)的取值范圍為19(1);(2)【解析】(1)設數(shù)列的公差為d,由可得,由即可解得,故,由,即可解得,進而求得.(2) 由(1)

15、得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數(shù)列的公差為d,數(shù)列的公比為q,由可得,整理得,即,故,由可得,則,即,故.(2)由(1)得,故,所以,數(shù)列的前n項和為,設,則,得,綜上,數(shù)列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數(shù)列的和,考查學生的計算能力,難度一般.20(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調性;(2)根據(jù)題意構造函數(shù),得,參變分離得,分析不等式,即轉化為,設,再構造函數(shù),利用導數(shù)得單調性,進而得證.【詳解】(1)依題意,當時,當時,恒成立,此時在定義域上單調遞增;當

16、時,若,;若,;故此時的單調遞增區(qū)間為,單調遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則=,(也可代入后再求導)在上單調遞減,故對于時,總有.由此得【點睛】本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,屬于難題.21 (1);(2) .【解析】分析:(1)先根據(jù)絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對值三角不等式得最小值,最后解不等式得的取值范圍詳解:(1)當時,可得的解集為(2)等價于而,且當時等號成立故等價于由可得或,所以的取值范圍是點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運用分類討論思想,法二是運用數(shù)形結合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結合與轉化化歸思想方法的靈活應用,這是命題的新動向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論