云南省迪慶2022年高三下第一次測試數(shù)學試題含解析_第1頁
云南省迪慶2022年高三下第一次測試數(shù)學試題含解析_第2頁
云南省迪慶2022年高三下第一次測試數(shù)學試題含解析_第3頁
云南省迪慶2022年高三下第一次測試數(shù)學試題含解析_第4頁
云南省迪慶2022年高三下第一次測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1為比較甲、乙兩名高二學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為5分,分值高者為優(yōu)),

2、根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述正確的是( )A乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B乙的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C甲的六大素養(yǎng)整體水平優(yōu)于乙D甲的六大素養(yǎng)中數(shù)據(jù)分析最差2已知函數(shù),則( )A1B2C3D43是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為( )ABCD4已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則( )ABCD5數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,則實數(shù)的最大值為()ABCD6設(shè),滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為( )A60B80C

3、90D1207已知復數(shù)滿足,其中為虛數(shù)單位,則( )ABCD8有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝( )(附:)A個B個C個D個9函數(shù)f(x)=ln(x2-4x+4)(x-2)3的圖象可能是下面的圖象( )ABCD10已知為等腰直角三角形,為所在平面內(nèi)一點,且,則( )ABCD11設(shè),是非零向量,若對于任意的,都有成立,則ABCD12若為虛數(shù)單位,則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20分。13已知雙曲線(,)的左,右

4、焦點分別為,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,則雙曲線的離心率為_. 14已知向量滿足,則_.15已知,則_。16已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面A1B1C1D1內(nèi)一動點,若三棱錐P-ABC的外接球表面積恰為414,則此時點P構(gòu)成的圖形面積為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設(shè)四個籃球館一個月內(nèi)各

5、館使用次數(shù)之和為,其相應維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用最小二乘法求與的回歸直線方程;叫做籃球館月惠值,根據(jù)的結(jié)論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,18(12分)如圖所示的幾何體中,四邊形為正方形,四邊形為梯形,為中點.(1)證明:;(2)求二面角的余弦值.19(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.(1)為了解“五一”勞動節(jié)當日

6、江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數(shù)據(jù)分成3個區(qū)間整理得表:勞動節(jié)當日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率

7、,且每年勞動節(jié)當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入?yún)s不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數(shù)學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?20(12分)如圖,矩形和梯形所在的平面互相垂直,.(

8、1)若為的中點,求證:平面;(2)若,求四棱錐的體積.21(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,求的值22(10分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項.【詳解】根據(jù)雷達圖得到如下數(shù)據(jù):數(shù)學抽象邏

9、輯推理數(shù)學建模直觀想象數(shù)學運算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應用意識.2C【解析】結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.3D【解析】首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當也為四棱錐的外接球球心時

10、,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、分別為、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.4C【解析】根據(jù)題意,由函數(shù)的奇偶性可得,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查

11、函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎(chǔ)題5D【解析】利用等差數(shù)列通項公式推導出,由d1,2,能求出實數(shù)取最大值【詳解】數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得,d1,2,2是減函數(shù),d1時,實數(shù)取最大值為故選D【點睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題6B【解析】畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),即,故表示直線與截距的倍,根據(jù)圖像知:當時,的最大值為,故.展開式的通項為:,取

12、得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.7A【解析】先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數(shù)的基本運算,注意計算的準確度,屬于簡單題目.8C【解析】計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為c

13、m,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.9C【解析】因為fx=lnx2-4x+4x-23=lnx-22x-23,所以函數(shù)fx的圖象關(guān)于點(2,0)對稱,排除A,B當x0,x-230,所以fx0,排除D選C10D【解析】以AB,AC分別為x軸和y軸建立坐標系,結(jié)合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、

14、運算求解能力.11D【解析】畫出,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.12B【解析】由共軛復數(shù)的定義得到,通過三角函數(shù)值的正負,以及復數(shù)的幾何意義即得解【詳解】由題意得,因為,所以在復平面內(nèi)對應的點位于第二象限故選:B【點睛】本題考查了共軛復數(shù)的概念及復數(shù)的幾何意義,考查了學生概念理解,數(shù)形結(jié)合,數(shù)學運算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,

15、每小題5分,共20分。13【解析】設(shè),由雙曲線的定義得出:,由得為等腰三角形,設(shè),根據(jù),可求出,得出,再結(jié)合焦點三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設(shè),由雙曲線的定義得出:,由圖可知:,又,即,則,為等腰三角形,設(shè),則,即,解得:,則,解得:,解得:,在中,由余弦定理得:,即:,解得: ,即. 故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.141【解析】首先根據(jù)向量的數(shù)量積的運算律求出,再根據(jù)計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數(shù)量積的運算,屬于基礎(chǔ)題.15【解析】由已知求,再利用和角正

16、切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。16.【解析】設(shè)三棱錐P-ABC的外接球為球O,分別取AC、A1C1的中點O、O1,先確定球心O在線段AC和A1C1中點的連線上,先求出球O的半徑R的值,然后利用勾股定理求出OO的值,于是得出OO1=OO1-OO,再利用勾股定理求出點P在上底面軌跡圓的半徑長,最后利用圓的面積公式可求出答案【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O,分別取AC、A1C1的中點O、O1,則點O在線段OO1上,由于正方體ABCD-A1B1C1D1的棱長為2,則ABC的外接圓的半徑為OA=2,設(shè)球O的半徑為R,

17、則4R2=414,解得R=414.所以,OO=R2-OA2=34,則OO1=OO1-OO=2-34=54而點P在上底面A1B1C1D1所形成的軌跡是以O(shè)1為圓心的圓,由于OP=R=414,所以O(shè)1P=R2-OO12=1,因此,點P所構(gòu)成的圖形的面積為O1P2=.【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析,12.5(2)20【解析】(1) 運用分層抽樣,結(jié)合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2) 由公式可計算的值,進而可求與的回歸直線方

18、程;求出,再對函數(shù)求導,結(jié)合單調(diào)性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,所以分布列為期望為(2)因為所以,;,設(shè),所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.18(1)見解析;(2)【解析】(1)取的中點,結(jié)合三角形中位線和長度關(guān)系,為平行四邊形,進而得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以,為,軸建立空間直角坐標系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳

19、角確定最終二面角的余弦值;【詳解】(1)取的中點,連結(jié),因為為中點,所以,為平行四邊形,所以,又因為,所以;(2)由題及(1)易知,兩兩垂直,所以以,為,軸建立空間直角坐標系,則,易知面的法向量為設(shè)面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點睛】本題考查立體幾何中直線與平面平行關(guān)系的證明、空間向量法求解二面角,正確求解法向量是解題的關(guān)鍵,屬于中檔題.19(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解析】(1)首先計算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【詳解】(1)年齡在內(nèi)

20、的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)當投入1艘型游船時,因客流量總大于1,則(萬元).當投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).當投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節(jié)當日應投入3艘型游船使其當日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)

21、學思想方法,屬于中檔題.20 (1)見解析(2) 【解析】(1)設(shè)EC與DF交于點N,連結(jié)MN,由中位線定理可得MNAC,故AC平面MDF;(2)取CD中點為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG平面CDEF,故BGDF,又DFBE得出DF平面BEG,從而得出DFEG,得出RtDEGRtEFD,列出比例式求出DE,代入體積公式即可計算出體積【詳解】(1)證明:設(shè)與交于點,連接,在矩形中,點為中點,為的中點,又平面,平面,平面.(2)取中點為,連接,平面平面,平面平面,平面,平面,同理平面,的長即為四棱錐的高,在梯形中,四邊形是平行四邊形,平面,又平面,又,平面,.注意到,.【點睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法分割法、補形法、等體積法. 割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決等積法:等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論