![人教版八年數(shù)學上第13章-軸對稱單元復習教學課件(共27p)_第1頁](http://file4.renrendoc.com/view/a1243269a37d63f84c8c04ee85aace6d/a1243269a37d63f84c8c04ee85aace6d1.gif)
![人教版八年數(shù)學上第13章-軸對稱單元復習教學課件(共27p)_第2頁](http://file4.renrendoc.com/view/a1243269a37d63f84c8c04ee85aace6d/a1243269a37d63f84c8c04ee85aace6d2.gif)
![人教版八年數(shù)學上第13章-軸對稱單元復習教學課件(共27p)_第3頁](http://file4.renrendoc.com/view/a1243269a37d63f84c8c04ee85aace6d/a1243269a37d63f84c8c04ee85aace6d3.gif)
![人教版八年數(shù)學上第13章-軸對稱單元復習教學課件(共27p)_第4頁](http://file4.renrendoc.com/view/a1243269a37d63f84c8c04ee85aace6d/a1243269a37d63f84c8c04ee85aace6d4.gif)
![人教版八年數(shù)學上第13章-軸對稱單元復習教學課件(共27p)_第5頁](http://file4.renrendoc.com/view/a1243269a37d63f84c8c04ee85aace6d/a1243269a37d63f84c8c04ee85aace6d5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、1第十三章 軸對稱復習課第1頁,共27頁。2生活中的軸對稱 軸對稱 等腰三角形用坐標表示軸對稱歸納與整理性質(zhì)軸對稱圖形兩個圖形關于某條直線對稱性質(zhì)判定等邊三角形特殊第2頁,共27頁。3專題一:軸對稱一、知識要點 1.軸對稱 (1)軸對稱圖形: 如果把一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。 (2)軸對稱:把一個圖形沿著某一條直線折疊后,能夠與另一個圖形重合,那么這兩個圖形關于這條直線成軸對稱,這條直線叫做對稱軸,兩個圖形中的對應點叫做對稱點。 (3)圖形軸對稱的性質(zhì):如果兩個圖形關于某直線對稱,那么對稱軸是任何一對對應點所連線段的垂
2、直平分線。第3頁,共27頁。4 (4)軸對稱圖形的性質(zhì):軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線。 (5)圖形對稱軸的做法:要作兩個圖形的對稱軸,只要找到這兩個圖形的一對對應點,然后連接它們,得到一條直線,在作出這條線段的垂直平分線,這條垂直平分線就是這兩個圖形的對稱軸。 2.線段的垂直平分線 (1)經(jīng)過線段的中點并且垂直于這條線段的直線,叫做線段的垂直平分線。 (2)線段垂直平分線的性質(zhì): 線段垂直平分線上的點到線段兩個端點的距離相等;到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。 第4頁,共27頁。5 正方形、長方形、等腰三角形、等腰梯形和圓都是軸對稱圖形。有的軸
3、對稱圖形有不止一條對稱軸。第5頁,共27頁。6二、題目特點:判斷軸對稱圖形或?qū)ΨQ軸的條數(shù)根據(jù)軸對稱圖形的性質(zhì)作對稱軸用線段垂直平分線的性質(zhì)解決計算題或進行證明說理三、解題切入點: 熟練掌握軸對稱圖形概念、性質(zhì)以及線段垂直平分線的性質(zhì)是解決有關問題的關鍵。例1 國旗是一個國家的象征,觀察下面的國旗,是軸對稱圖形的是( )A.加拿大、韓國、烏拉圭 B.加拿大、瑞典、澳大利亞C.加拿大、瑞典、瑞士 D.烏拉圭、瑞典、瑞士 加拿大 韓國 澳大利亞 烏拉圭 瑞典 瑞士C第6頁,共27頁。7例2 小明照鏡子的時候,發(fā)現(xiàn)T恤上的英文單詞在鏡子中呈現(xiàn)“ ”的樣子,請你判斷這個英文單詞( ) A B C D例3
4、 哪一面鏡子里是他的像?A第7頁,共27頁。8例4 如圖,要在街道旁修建一個奶站,向居民區(qū)A、B提供牛奶,奶站應建在什么地方,才能使從、B到它的距離相等?街道居民區(qū)A居民區(qū)BPNM ABL第8頁,共27頁。9例5 如圖,ABC中,BAC=120,若DE、FG分別垂直平分AB、AC,AEF的周長為10cm,求EAF的度數(shù)及BC長。ACEFGB D解: BAC=120 B+ C=60 又 DE垂直平分AB BE=AE,B= BAE同理 AF=CF,C= CAF AE+EF+AF =BE+EF+CF=10cmEAF= BAC-BAE-CAF =120- B- C=60第9頁,共27頁。10例6 如圖
5、,ABC中,AB=AC,A=50,AB的垂直平分線交AC于D,求 FBC的度數(shù)。ACBD 解: AB=AC, A=50 ABC= C=65 又 AC是線段AB的垂直平分線 AF=FB ABF=A=50 從而 DBC= ABC- ABD =65-50=15F第10頁,共27頁。11專題二:軸對稱變換一、知識要點 1.軸對稱變換 (1)有一個平面圖形得到它的軸對稱圖形叫做軸對稱變換。由軸對稱變換得到的圖形與原圖形形狀、大小完全相同;新圖形上的每一點都是原圖形上的某一點關于對稱軸的對稱點;連接任意一對對應點的線段被對稱軸垂直平分。 (2)作一個平面圖形的對稱圖形,先作一些點的對應點,再連接這些對應點
6、,就可得到原圖形的軸對稱圖形。對于線段、三角形、四邊形等由直線、線段或射線組成的圖形,只要做出原圖形上的關鍵點的對應點,然后連接這些對應點,即可得到相應的對稱圖形。 (3)利用軸對稱變換設計圖案,主要是借助平移等有關知識。第11頁,共27頁。12ABCmA1B1C1.A1B1C1為所求由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換第12頁,共27頁。13 2.以坐標軸為對稱軸作軸對稱圖形 (1)點P(x, y)關于x軸對稱的對稱點為P1(x, -y) 點P(x, y)關于y軸對稱的對稱點為P2(-x, y) (2)作一個圖形關于坐標軸對稱的圖形,一般先作圖形上關鍵點關于坐標軸的對稱點,然后連接
7、對稱點即可。二、題型特點 (1)作一個平面圖形關于已知直線的對稱圖形 (2)求已知點關于坐標軸對稱的對稱點的坐標 (3)根據(jù)軸對稱變換設計圖案 (4)根據(jù)軸對稱變換解決實際生活中問題三、解題切入點:作一個平面圖形的軸對稱圖形,關鍵是確定原圖形上的關鍵點,只要作出這些關鍵點之間的對稱點,然后按原圖形的順序連接即可;求一個點關于坐標軸對稱點的坐標,關鍵是熟練掌握對稱點之間的坐標特征。第13頁,共27頁。14例1 如圖,以直線AE為對稱軸,畫出該圖形的另一部分。BCADEFH解:作圖過程如下: (1)分別作出點B、C關于直線AE的對稱點F、H。 (2)連結(jié)AF、FD、DH、HE,得到所求的圖形。第1
8、4頁,共27頁。15A(-,-1)31425-2-4-1-3012345-4-3-2-1C(-3,2)B(-1,-1)A(-,1)如圖,利用關于坐標軸對稱的點的坐標的特點,分別作出ABC關于X軸和y 軸對稱的圖形。B(1,-1)C(3,2)A(,1)C(-3,-2)B(-1,1)xy點P(a,b)關于x軸對稱的點的坐標為(a,-b)點P(a,b)關于y軸對稱的點的坐標為(-a,b)第15頁,共27頁。16 例2 如圖,(1)作出ABC關于y軸對稱的A1B1C1,并寫出A1B1C1各頂點的坐標;(2)將ABC向右平移6個單位,作出平移后的A2B2C2 ,并寫出A2B2C2各頂點的坐標;(3)觀察
9、A1B1C1和A2B2C2 ,它們是否關于某直線對稱?若是,畫出這條對稱軸。yx -2 -1 0 1 2 3 4 5 6 74321A BC(A 1)B1C1X=3A2C2B2第16頁,共27頁。17例3 點M(3a-b, 4)與點N(9,2a+b)關于x軸對稱,求a和b。 解:由于(x, y)關于x軸對稱的點的坐標為(x, -y),則 點M(3a-b, 4)與點N(9,2a+b)關于x軸對稱有 3a-b=9 4=-(2a+b) a=1, b=-6若M、N關于y軸對稱又怎樣?第17頁,共27頁。18專題三:等腰三角形一、知識要點: 1.等腰三角形 (1)有兩條邊相等的三角形叫做等腰三角形。等腰
10、三角形是軸對稱圖形。 (2)性質(zhì):等腰三角形的兩個底角相等 等腰三角形的頂角平分線、底邊的中線、 底邊上的高互相重合。 (3)判別方法:有兩條邊相等(概念) 等角對等邊第18頁,共27頁。19 2.等邊三角形 (1)三邊都相等的三角形叫做等邊三角形,其是軸對稱圖形,有三條對稱軸。 (2)性質(zhì):等邊三角形的三個角都是60 (3)判定: 三個角都相等的三角形是等邊三角形 有一個角是60的等腰三角形是等邊三角形 有三個邊都相等的三角形是等邊三角形直角三角形中30的角所對的直角邊等于斜邊的一半推論 第19頁,共27頁。20二、題型特點: (1)計算題,如求等腰三角形的腰長、周長、角等 (2)說理題,如
11、證明一個三角形是等腰(或等邊)三角形 (3)實際應用題,如根據(jù)實際問題構(gòu)造等腰三角形解決問題三、解題切入點:解決和等腰三角形有關的計算問題,要把握等腰三角形的性質(zhì),注意分類思想在等腰三角形中的應用,解決證明問題主要依據(jù)等腰(或等邊)三角形的性質(zhì)和判定方法,有的問題還需要做恰當?shù)妮o助線。第20頁,共27頁。21例1 如圖7,在ABC中,已知AB=AC,BD、CE是兩條角平分線,BD、CE相交于點O,OBC是等腰三角形嗎?為什么? 解:OBC是等腰三角形 在ABC中,AB=AC ABC= ACB(等邊對等角) 又 BD、CE是兩條角平分 DBC= ABD, ACB= ECB而 ABC= DBC+
12、ABDACB= ACB+ ECB DBC= ECB即 OBC是等腰三角形第21頁,共27頁。22例2 如圖,已知ABC為等邊三角形,D、E、F分別在邊BC、CA、AB,且DEF也是等邊三角形除已知相等的邊以外,請你猜想還有哪些相等線段,并證明你的猜想是正確的.解:圖中還有相等的線段是: AE=BF=CD,AF=BD=CE , ABC與DEF都是等邊三角形,A=B=C=60,EDF=DEF=EFD=60, DE=EF=FD , 又CED+AEF=120,CDE+CED=120AEF=CDE,同理,得CDE=BFD, AEFBFDCDE(AAS), AE=BF=CD,AF=BD=CE .第22頁,
13、共27頁。23例3 如圖,A、B、C三點在同一直線上,分別以AB,BC為邊在AC同側(cè)作等邊ABD和等邊BCE,AE交BD于點,DC交BE于點, (1)求證:AE=DCDABECFG證明: ABD、 BCE是等邊三角形 AB=DB, BE=BC ABD= CBE=60 又 ABE= ABD+ DBE DBC= CBE+ DBE ABE= DBC在ABD和BCE中 AB=DB ABE= DBC BE=BC ABDBCE AE=DC第23頁,共27頁。 (2)求證:FG (BFG是等邊三角形)(3)求證:FGACDABECFG12345證明:由(1)得 ABDBCE 4= 5 ABD 、 BCE是等邊三角形 AB=DB, 1= 2=60 從而有 3= 1=60 在ABF和DBG中 3= 1 4= 5 AB=DB ABF DBGFG第24頁,共27頁。251.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度數(shù)據(jù)中心建設項目結(jié)算與節(jié)能減排服務合同
- 2025年度工業(yè)自動化設備檢測與維護服務合同
- 2025年度材料科學檢測檢驗服務合同(全新版)
- 2025年度家庭裝修工程環(huán)保驗收與整改合同
- 2025年度公園游客休閑設施設計與制造合同
- 鐵嶺2025年遼寧鐵嶺市事業(yè)單位面向駐鐵部隊隨軍未就業(yè)家屬招聘12人筆試歷年參考題庫附帶答案詳解
- 賀州2025年廣西賀州市昭平縣赴玉林師范學院招聘教師64人筆試歷年參考題庫附帶答案詳解
- 西雙版納云南西雙版納州土地礦產(chǎn)儲備中心招聘筆試歷年參考題庫附帶答案詳解
- 蘇州2024年江蘇蘇州太倉市消防救援大隊政府專職消防救援站招聘30人筆試歷年參考題庫附帶答案詳解
- 茂名2025年廣東省茂名市選聘市屬高職院校急需緊缺博士人才12人筆試歷年參考題庫附帶答案詳解
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術學院單招職業(yè)適應性測試題庫
- 《大白菜種植栽培技》課件
- 圖書借閱登記表
- 2024年重慶市公務員錄用考試《行測》真題及解析
- 中華人民共和國能源法
- 人居環(huán)境綜合治理項目項目背景及必要性分析
- 2024年法律職業(yè)資格考試(試卷二)客觀題試題及解答參考
- 2024年注冊建筑師-二級注冊建筑師考試近5年真題附答案
- 川教版信息技術六年級下冊全冊教案【新教材】
- 五年級口算題卡每天100題帶答案
- 食品感官檢驗:品評人員的篩選與培訓
評論
0/150
提交評論