人教版·數(shù)學(xué)Ⅰ-§131函數(shù)的最大(小)值_第1頁
人教版·數(shù)學(xué)Ⅰ-§131函數(shù)的最大(?。┲礯第2頁
人教版·數(shù)學(xué)Ⅰ-§131函數(shù)的最大(?。┲礯第3頁
人教版·數(shù)學(xué)Ⅰ-§131函數(shù)的最大(小)值_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、課題:1.3.1函數(shù)的最大(?。┲到虒W(xué)目的:(1)理解函數(shù)的最大(?。┲导捌鋷缀我饬x;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);教學(xué)重點(diǎn):函數(shù)的最大(?。┲导捌鋷缀我饬x教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性求函數(shù)的最大(小)值 教學(xué)過程:引入課題畫出下列函數(shù)的圖象,并根據(jù)圖象解答下列問題: eq oac(,1) 說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性; eq oac(,2) 指出圖象的最高點(diǎn)或最低點(diǎn),并說明它能體現(xiàn)函數(shù)的什么特征?(1)(2)(3)(4)新課教學(xué)(一)函數(shù)最大(小)值定義1最大值:一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足: (1)對(duì)于任意的xI,都有f(

2、x)M;(2)存在x0I,使得f(x0) = M那么,稱M是函數(shù)y=f(x)的最大值(Maximum Value)思考:仿照函數(shù)最大值的定義,給出函數(shù)y=f(x)的最小值(Minimum Value)的定義(學(xué)生活動(dòng))注意: eq oac(,1)函數(shù)最大(小)首先應(yīng)該是某一個(gè)函數(shù)值,即存在x0I,使得f(x0) = M; eq oac(,2) 函數(shù)最大(?。?yīng)該是所有函數(shù)值中最大(?。┑?,即對(duì)于任意的xI,都有f(x)M(f(x)M)2利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲档姆椒?eq oac(,1) 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲?eq oac(,2) 利用圖象求函數(shù)的最大

3、(?。┲?eq oac(,3) 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲等绻瘮?shù)y=f(x)在區(qū)間a,b上單調(diào)遞增,在區(qū)間b,c上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間a,b上單調(diào)遞減,在區(qū)間b,c上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);(二)典型例題例1(教材P36例3)利用二次函數(shù)的性質(zhì)確定函數(shù)的最大(?。┲到猓海裕┱f明:對(duì)于具有實(shí)際背景的問題,首先要仔細(xì)審清題意,適當(dāng)設(shè)出變量,建立適當(dāng)?shù)暮瘮?shù)模型,然后利用二次函數(shù)的性質(zhì)或利用圖象確定函數(shù)的最大(?。┲?5鞏固練習(xí):如圖,把截面半徑為25cm的圓形木頭鋸成矩形木料,如果矩形一邊長為x

4、,面積為y試將y表示成x的函數(shù),并畫出函數(shù)的大致圖象,并判斷怎樣鋸才能使得截面面積最大?例2(新題講解)旅 館 定 價(jià)一個(gè)星級(jí)旅館有150個(gè)標(biāo)準(zhǔn)房,經(jīng)過一段時(shí)間的經(jīng)營,經(jīng)理得到一些定價(jià)和住房率的數(shù)據(jù)如下:房?jī)r(jià)(元)住房率(%)16055140651207510085欲使每天的的營業(yè)額最高,應(yīng)如何定價(jià)?解:根據(jù)已知數(shù)據(jù),可假設(shè)該客房的最高價(jià)為160元,并假設(shè)在各價(jià)位之間,房?jī)r(jià)與住房率之間存在線性關(guān)系設(shè)為旅館一天的客房總收入,為與房?jī)r(jià)160相比降低的房?jī)r(jià),因此當(dāng)房?jī)r(jià)為元時(shí),住房率為,于是得=150由于1,可知090因此問題轉(zhuǎn)化為:當(dāng)090時(shí),求的最大值的問題將的兩邊同除以一個(gè)常數(shù)0.75,得1=2

5、5017600由于二次函數(shù)1在=25時(shí)取得最大值,可知也在=25時(shí)取得最大值,此時(shí)房?jī)r(jià)定位應(yīng)是16025=135(元),相應(yīng)的住房率為67.5%,最大住房總收入為13668.75(元)所以該客房定價(jià)應(yīng)為135元(當(dāng)然為了便于管理,定價(jià)140元也是比較合理的)例3(P37例4)求函數(shù)在區(qū)間2,6上的最大值和最小值注意:利用函數(shù)的單調(diào)性求函數(shù)的最大(?。┲档姆椒ㄅc格式鞏固練習(xí):(教材P38練習(xí)4)歸納小結(jié),強(qiáng)化思想函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明畫函數(shù)圖象通常借助計(jì)算機(jī),求函數(shù)的單調(diào)區(qū)間時(shí)必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:取 值 作 差 變 形 定 號(hào) 下結(jié)論作業(yè)布置書面作業(yè):課本P45 習(xí)題13(A組) 第6、7、8題ABCD提高作業(yè):快艇和輪船分別從A地和C地同時(shí)開

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論