新滬科版九年級下冊初中數(shù)學(xué) 課時2 切線長定理 教學(xué)課件_第1頁
新滬科版九年級下冊初中數(shù)學(xué) 課時2 切線長定理 教學(xué)課件_第2頁
新滬科版九年級下冊初中數(shù)學(xué) 課時2 切線長定理 教學(xué)課件_第3頁
新滬科版九年級下冊初中數(shù)學(xué) 課時2 切線長定理 教學(xué)課件_第4頁
新滬科版九年級下冊初中數(shù)學(xué) 課時2 切線長定理 教學(xué)課件_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第24章 圓24.4 直線與圓的位置關(guān)系課時2 切線長定理目 錄CONTENTS1 學(xué)習(xí)目標(biāo)2 新課導(dǎo)入3 新課講解4 課堂小結(jié)5 當(dāng)堂小練6 拓展與延伸7 布置作業(yè)1.掌握切線長定理及其應(yīng)用.(重點(diǎn))2.學(xué)會與切線長定理有關(guān)的計算和證明問題. (難點(diǎn))學(xué)習(xí)目標(biāo)新課導(dǎo)入情境導(dǎo)入 新農(nóng)村建設(shè)中,張村計劃在一個三角形中建一個最大面積的圓形花園,請你設(shè)計一個建筑方案新課講解 知識點(diǎn)1 切線長定理切線長:在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之 間的線段的長.PBCO切線長和切線的區(qū)別:切線是直線,切線長是切線上一部分線段的長度切線是:直線PB和PC切線長是:線段PB和PC的長度新課講解O.PA B

2、切線長定理: 過圓外一點(diǎn)所畫的圓的兩條切線的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角.PA、PB分別切O于A、BPA = PBOPA=OPB幾何語言:BPOACED(1)圖中所有的垂直關(guān)系:(2)圖中與OAC和AOC相等的角:(3)圖中所有的相等的線段:(4)圖中所有的全等三角形:(5)圖中所有的等腰三角形: 新課講解 PA、PB是O的兩條切線,A、B為切點(diǎn),直線OP交O于點(diǎn)D、E,交AB于C.OAPA,OB PB,AB OP.OAC=OBC=APC=BPC.AOC=BOC=PAC=PBCPA=PB,AC =BC,OA =OB.AOP BOP, AOC BOC, ACP BCP.ABP

3、 AOB新課講解例典例分析 1 已知:如圖,四邊形ABCD的邊AB,BC,CD,DA和O分別相切于點(diǎn)E,F(xiàn),G,H. 求證: AB + CD = DA + BC.證明: AB,BC,CD,DA都與O相切, E,F(xiàn),G,H是切點(diǎn), AE = AH,BE = BF,CG = CF,DG = DH. AE + BE + CG + DG = AH + BF + CF + DH, 即 AB + CD = DA + BC.ABCDOEFGH 2 如圖,PA,PB是O的切線,切點(diǎn)分別為 A,B,BC為O的直徑,連接AB,AC,OP.求證:(1)APB2ABC;(2)ACOP.新課講解分析:(1)由切線長定理

4、知BPOAPO APB, 而要證APB2ABC,即證明ABC APBBPO,利用同角的余角相等可證; (2)證明ACOP,可用ACAB,OPAB,也可 用同位角相等兩直線平行來證例新課講解解:(1)PA,PB分別切O于點(diǎn)A,B, 由切線長定理知APOBPO APB,PAPB, POAB,ABPBPO90. 又PB是O的切線,OBPB. ABPABC90. ABCBPO APB, 即APB2ABC.(2)BC是O的直徑,BAC90, 即ACAB.由(1)知OPAB,ACOP.新課講解練一練12 如圖,從圓O外一點(diǎn)P引圓O的兩條切線PA,PB,切點(diǎn)分別為A,B.如果APB60,PA8,那么弦AB的

5、長是()A4B8C4D8如圖,PA和PB是O的切線,點(diǎn)A和B是 切點(diǎn),AC是O的直徑,已知P40,則ACB的大小是( )A60 B65 C70 D75BC新課講解 如圖,PA,PB是O的切線,A,B是切點(diǎn),點(diǎn)C是AB 上一點(diǎn),過點(diǎn)C作O的切線分別交PA,PB于點(diǎn)D,E.已知APB60,O的半徑為 ,則PDE的周長為_,DOE的度數(shù)為_6063課堂小結(jié)切線長切線長定理作用圖形的軸對稱性原理提供了證線段和角相等的新方法輔助線分別連接圓心和切點(diǎn);連接兩切點(diǎn);連接圓心和圓外一點(diǎn).當(dāng)堂小練1. 如圖,PA切O于A,PB切O于B,連接OP,AB.下列結(jié)論不一定正確的是()APAPB BOP垂直平分AB C

6、OPAOPB DPAAB2.如下列說法正確的是() A過任意一點(diǎn)總可以作圓的兩條切線 B圓的切線長就是圓的切線的長度 C過圓外一點(diǎn)所畫的圓的兩條切線長相等 D過圓外一點(diǎn)所畫的圓的切線長一定大于圓的半徑DC當(dāng)堂小練3. 如圖,過O外一點(diǎn)P作圓的切線PA,PB,F是劣弧AB上任意一點(diǎn),過點(diǎn)F作O的切線分別交PA,PB于點(diǎn)D,E,如果PA=10,P=42.求:(1)PED的周長; (2)DOE的度數(shù).解:(1)DA,DF分別切O于點(diǎn)A,F, DA=DF. 同理EF=EB,PB=PA=10. PED的周長為PD+PE+DE =PD+PE+DF+EF=PD+PE+DA+EB =(PD+DA)+(PE+E

7、B)=PA+PB=20.當(dāng)堂小練(2)DA,DF分別切O于點(diǎn)A,F,DAO=DFO=90.在RtAOD與RtFOD中, AO=FO,OD=OD, RtAODRtFOD, AOD=FOD = AOF, 同理EOF=BOE= BOF, DOE=FOD+EOF= AOF+ BOF = (AOF+BOF)= AOB.又PAO=PBO=90, AOB=360-PAO-PBO-P=180-P=138, DOE= AOB=69.D拓展與延伸1.已知在O中,AC為直徑,MA,MB分別切O于點(diǎn)A,B.(1)如圖(1),若BAC25,求AMB的大??;(2)如圖(2),過點(diǎn)B作BDAC于點(diǎn)E,交O于點(diǎn) D,若BDMA,求AMB的大小拓展與延伸解:(1)MA,MB分別切O于點(diǎn)A,B, MAMB,OAM90, MABMBA. 又OAB25, MAB90OAB 902565. AMB1802MAB 18026550.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論