![大二上期末復習-職協(xié)cic線性代數exercise_第1頁](http://file4.renrendoc.com/view/edd36a19b3c270e97cb4d54c5bdbe376/edd36a19b3c270e97cb4d54c5bdbe3761.gif)
![大二上期末復習-職協(xié)cic線性代數exercise_第2頁](http://file4.renrendoc.com/view/edd36a19b3c270e97cb4d54c5bdbe376/edd36a19b3c270e97cb4d54c5bdbe3762.gif)
![大二上期末復習-職協(xié)cic線性代數exercise_第3頁](http://file4.renrendoc.com/view/edd36a19b3c270e97cb4d54c5bdbe376/edd36a19b3c270e97cb4d54c5bdbe3763.gif)
![大二上期末復習-職協(xié)cic線性代數exercise_第4頁](http://file4.renrendoc.com/view/edd36a19b3c270e97cb4d54c5bdbe376/edd36a19b3c270e97cb4d54c5bdbe3764.gif)
![大二上期末復習-職協(xié)cic線性代數exercise_第5頁](http://file4.renrendoc.com/view/edd36a19b3c270e97cb4d54c5bdbe376/edd36a19b3c270e97cb4d54c5bdbe3765.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1The First Examination1. Consider the system of equations For what values of a does the system have infinitely many solutions? No solutions? A unique solution in which x2=0?Solution: For augment matrix, set row operations(1)a2+a-2=0 and a2-a-6=0,that is, a=-2, infinitely many solutions.(2) a2+a-2=0
2、but a2-a-60,that is, a=1, no solution.(3) a2+a-2 0,that is a -2 , a 1, unique solution.and a -2 , a=3, unique solution(in this situation x2=0).22. Let Determine conditions on b1,b2,and b3 that are necessary and sufficient for the system if equations AX=b to be consistent.For each of the following ch
3、oices of b, either show that the system AX=b is inconsistent or exhibit the solution.33. Let anda)Simultaneously solve each of the systems Ax=bi,i=1,2,3, whereb)Let B=b1,b2,b3. Use the results of part(a) to exhibit a (33) matrix C such that AC=B. Solution:44. Let Find a (32) matrix B such that AB=C.
4、 Solution:55. Let A be the nonsingular (55) matrix, and let . For a given vector b, suppose that 1,3,5,7,9T is the solution to Bx=b. What is the solution of Ax=b? Solution:66.Let a) Solve the vector equation , where b) Show that the set of vectors v1,v2,v3 is linearly dependent by exhibiting a nontr
5、ivial solution to the vector equation Solution:77. Let And define a function T:By T(X)=AX for each in R3(a) Find a vector X in R3 such that T(X)=b, where (b) If 0 is the zero vector of R3, then clearly T(0)=0. describe all vectors X in R3 such that T(X)=0.88. Let FindSuch that 99.Find A-1 for each o
6、f the following matrices A (1)(2)1010.For what values of is the matrixsingular? Find A-1 if A is nonsingular.1111.Find A if A is (22) matrix and 1213. Let Calculate A99 and A1001318.Let a) Without calculate A or B, find (ATB)-1b) Without calculate A or B, find(A-1B-1)-1A-1B-1 14The First Examination
7、1、A is nn matrix,A=A1 A2 A3,Ai is the ith column of A, so Solution:152、A is 33 matrix,and ,so(a)4, (b)-4, (c)16, (d)-163、A is 33 matrix ,A* is the adjoint matrix of A, and ,please calculate the value of Solution:Solution:164、calculate the determinant ofExpanded on the last row17185、if,findSolution:1
8、96、Solution:207、Solution:218、Solution:229、If A and B are nn matrices ,then( )A、|-A-1|=- |A-1|-1 B、(AB)K=AKBKC、|A|B|=|B|A| D、|A*|=|A|n-110. If A,B,C, are nn matrices, such that ABC=I,then( )A、 ACB=I B、 CAB=I C、 BAC=I D、BCA=I2311.If A and B, are nn matrices, then( )If A or B is invertible ,so is AB If
9、 A or B is not invertible ,then AB is not invertible(c) If A and B are invertible ,then A+B is invertible (d) If A and B are not invertible, then A+B is not invertible 2412.Suppose,Then ( ) A、AP1P2=B B、 AP2P1=B C、 P1P2A=B D、 P2P1A=B 2513、If Where ai0,i=1,2,n ,find A-1Solution: we apply the formula 2
10、6If ,where P is a 33 invertible matrix,then B2004-2A2=Solution: because2715.If then k0, k316. supposeIf k1/4,then 123 are independent Solution: becauseSolution: because2817. Suppose the 3 dimension vectors aredetermine the value of ,which makes the following statement true. (1) is the only combinati
11、on of 1 2 329(2) could be expressed the linear combination of 1 2 3 ,and the combination is not only.(3) could not be expressed the linear combination of 1 2 3When =0, Because When =-3, Because 3018. Suppose A=(aij)is 33 matrix,satisfy (1) aij= Aij(i,j=1,2,3),where Aijis the factor of aij(2)a110Plea
12、se calculate |A|Solution : because aij= Aij , so AT=A*And AA*=|A|3ISo |A| |A*|= |A|3 |A|2= |A|3 |A|2(|A|-1)=0 |A|=0 or |A|=1But a110, so |A|=13119.Suppose A is n m matrix, B is m n matrix,and nm,I is n n identity matrix,satisfy AB=I .Show that :the column vectors of matrix B is independent.Proof :Su
13、ppose So 3220.Suppose the set 1,2 , ,m-1 (m3) is linear dependent,but the set 2 , ,m is linear independent,discuss: (1) Is 1could be written as the linear combination of 2 , ,m-1? (2)Is m 1could be written as the linear combination of 1,2 , ,m-1?33The second examination(1) if is a eigenvector of A,t
14、hen we deduce a eigenvector of matrix P-1AP is (2) If A is ( ) zero matrix, then its all eigenvalues are 34(3) If A is ( ) matrix, are two eigenvalues of A, and are the eigenvectors corresponding to ,respectively. Then ( )a. When , must be proportional b. When , must be not proportionalc. When , mus
15、t be proportionald.when , must be not proportional 35(4) Determine the eigenvalues of A, where A is 36(5) If A is (44) matrix, and A satisfy |3I+A|=0 ,AAT=2I ,|A|0. Determine a eigenvalue of A*, where A* is the adjoint matrix. 37(6) If A is (33) matrix, and A satisfy , where , . Please determine mat
16、rix A. 38(7) Suppose (33) matrices , . Determine whether matrix A is similar to matrix B. if yes, calculate the nonsingular matrix M, such that 39(8) Suppose matrix . Determine the value of parameter k, such that P-1AP is diagonal matrix. Then calculate the nonsingular matrix P and the diagonal matr
17、ix 40(9) Suppose A is (nn) orthogonal matrix, and |A|=-1. Show that: is an eigenvalue of A. 41(10) Suppose A and B are (nn) matrices,matrix A is similar to matrix B, then ( )a. b. A, B have the same eigenvalues and the same eigenvectorsc. A,B are similar to the same diagonal matrix d. For arbitrary
18、constant t, matrix A-tI is similar to matrix B-tI, where I is the identity matrix. 42(11) If matrix , and |A|=-1. Suppose is the eigenvalue of adjoint matrix A*, is the eigenvector of . Determine parameters a,b,c, and 43(12) Suppose A and B are (44) matrices, and A is similar to B, the eigenvalues of A are . Determin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度紅木家具原材料采購合同
- 二零二五版沿街商品房出租與商業(yè)推廣合同3篇
- 2025年新型環(huán)保河沙供應合同標準范本
- 2025年度國內物流行業(yè)保理服務合同范本
- 2025合法的買賣合同模板
- 2025年度新型戶外廣告牌智能管理系統(tǒng)采購合同
- 2025北京市禽蛋買賣合同書
- 二零二五年度民間借貸法律風險防范合同
- 2025年度荒地土地開發(fā)項目規(guī)劃設計合同范本
- 2025關于質押借款的合同范本
- 2024-2025學年北京石景山區(qū)九年級初三(上)期末語文試卷(含答案)
- 第一章 整式的乘除 單元測試(含答案) 2024-2025學年北師大版數學七年級下冊
- JD37-009-2024 山東省存量更新片區(qū)城市設計編制技術導則
- 中國高血壓防治指南(2024年修訂版)
- GB/Z 44765.3-2024用戶端能源管理系統(tǒng)和電網側管理系統(tǒng)間的接口第3部分:架構
- 初中音樂聽課筆記20篇
- 央國企信創(chuàng)化與數字化轉型規(guī)劃實施
- 商標基礎知識課件
- 涉詐風險賬戶審查表
- 2023年大學英語四級考試模擬真題及答案
- 蘇教版二年級數學寒假輔導提高班課件 第1講 眼花繚亂的數據(66張PPT)
評論
0/150
提交評論