假設(shè)檢驗統(tǒng)計學(xué)原理_第1頁
假設(shè)檢驗統(tǒng)計學(xué)原理_第2頁
假設(shè)檢驗統(tǒng)計學(xué)原理_第3頁
假設(shè)檢驗統(tǒng)計學(xué)原理_第4頁
假設(shè)檢驗統(tǒng)計學(xué)原理_第5頁
已閱讀5頁,還剩70頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、假設(shè)檢驗統(tǒng)計學(xué)原理課件第1頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗在統(tǒng)計方法中的地位統(tǒng)計方法描述統(tǒng)計推斷統(tǒng)計參數(shù)估計假設(shè)檢驗第2頁,共75頁,2022年,5月20日,1點46分,星期一參數(shù)估計和假設(shè)檢驗參數(shù)估計和假設(shè)檢驗是統(tǒng)計推斷的兩個組成部分,都是利用樣本對總體進行某種推斷,但推斷的角度不同。參數(shù)估計討論的是用樣本統(tǒng)計量估計總體參數(shù)的方法。假設(shè)檢驗討論的是用樣本信息去檢驗對總體參數(shù)的某種假設(shè)是否成立的程序和方法。第3頁,共75頁,2022年,5月20日,1點46分,星期一一、 假設(shè)檢驗的一般問題1、什么是假設(shè)檢驗2、假設(shè)檢驗的基本思想3、雙側(cè)檢驗和單側(cè)檢驗4、假設(shè)檢驗

2、中的拒絕域和接受域5、假設(shè)檢驗的兩類錯誤6、假設(shè)檢驗的步驟第4頁,共75頁,2022年,5月20日,1點46分,星期一1、什么是假設(shè)檢驗假設(shè)檢驗是推論統(tǒng)計的重要內(nèi)容,是先對總體的未知數(shù)量特征作出某種假設(shè),然后抽取樣本,利用樣本信息對假設(shè)的正確性進行判斷的過程。統(tǒng)計假設(shè)有參數(shù)假設(shè)、總體分布假設(shè)、相互關(guān)系假設(shè)(兩個變量是否獨立,兩個分布是否相同)等。參數(shù)假設(shè)是對總體參數(shù)的一種看法??傮w參數(shù)包括總體均值、總體比例、總體方差等。分析之前必需陳述。我認為該企業(yè)生產(chǎn)的零件的平均長度為4厘米!第5頁,共75頁,2022年,5月20日,1點46分,星期一參數(shù)假設(shè)檢驗參數(shù)假設(shè)檢驗是通過樣本信息對關(guān)于總體參數(shù)的某

3、種假設(shè)合理與否進行檢驗的過程。即先對未知的總體參數(shù)的取值提出某種假設(shè),然后抽取樣本,利用樣本信息去檢驗這個假設(shè)是否成立。如果成立就接受這個假設(shè),如果不成立就放棄這個假設(shè)。下面主要討論參數(shù)假設(shè)檢驗的問題。舉例如下:第6頁,共75頁,2022年,5月20日,1點46分,星期一參數(shù)假設(shè)檢驗舉例例1:根據(jù)1989年的統(tǒng)計資料,某地女性新生兒的平均體重為3190克。為判斷該地1990年的女性新生兒體重與1989年相比有無顯著差異,從該地1990年的女性新生兒中隨機抽取30人,測得其平均體重為3210克。從樣本數(shù)據(jù)看,1990年女新生兒體重比1989年略高,但這種差異可能是由于抽樣的隨機性帶來的,也許這兩

4、年新生兒的體重并沒有顯著差異。究竟是否存在顯著差異?可以先假設(shè)這兩年新生兒的體重沒有顯著差異,然后利用樣本信息檢驗這個假設(shè)能否成立。這是一個關(guān)于總體均值的假設(shè)檢驗問題。第7頁,共75頁,2022年,5月20日,1點46分,星期一參數(shù)假設(shè)檢驗舉例例2:某公司進口一批鋼筋,根據(jù)要求,鋼筋的平均拉力強度不能低于2000克,而供貨商強調(diào)其產(chǎn)品的平均拉力強度已達到了這一要求,這時需要進口商對供貨商的說法是否真實作出判斷。進口商可以先假設(shè)該批鋼筋的平均拉力強度不低于2000克,然后用樣本的平均拉力強度來檢驗假設(shè)是否正確。這也是一個關(guān)于總體均值的假設(shè)檢驗問題。第8頁,共75頁,2022年,5月20日,1點4

5、6分,星期一參數(shù)假設(shè)檢驗舉例例3:某種大量生產(chǎn)的袋裝食品,按規(guī)定每袋重量不得少于250克,現(xiàn)從一批該種食品中任意抽取50袋,發(fā)現(xiàn)有6袋重量低于250克。若規(guī)定食品不符合標(biāo)準(zhǔn)的比例達到5就不得出廠,問該批食品能否出廠??梢韵燃僭O(shè)該批食品的不合格率不超過5,然后用樣本不合格率來檢驗假設(shè)是否正確。這是一個關(guān)于總體比例的假設(shè)檢驗問題。第9頁,共75頁,2022年,5月20日,1點46分,星期一2、假設(shè)檢驗的基本思想假設(shè)檢驗所依據(jù)的基本原理是小概率原理。什么是小概率?概率是01之間的一個數(shù),因此小概率就是接近0的一個數(shù)著名的英國統(tǒng)計家Ronald Fisher 把20分之1作為標(biāo)準(zhǔn),也就是0.05,從此

6、0.05或比0.05小的概率都被認為是小概率Fisher沒有任何深奧的理由解釋他為什么選擇0.05,只是說他忽然想起來的第10頁,共75頁,2022年,5月20日,1點46分,星期一什么是小概率原理?小概率原理發(fā)生概率很小的隨機事件(小概率事件)在一次實驗中幾乎是不可能發(fā)生的。根據(jù)這一原理,可以先假設(shè)總體參數(shù)的某項取值為真,也就是假設(shè)其發(fā)生的可能性很大,然后抽取一個樣本進行觀察,如果樣本信息顯示出現(xiàn)了與事先假設(shè)相反的結(jié)果且與原假設(shè)差別很大,則說明原來假定的小概率事件在一次實驗中發(fā)生了,這是一個違背小概率原理的不合理現(xiàn)象,因此有理由懷疑和拒絕原假設(shè);否則不能拒絕原假設(shè)。檢驗中使用的小概率是檢驗前

7、人為指定的。第11頁,共75頁,2022年,5月20日,1點46分,星期一小概率原理舉例:某工廠質(zhì)檢部門規(guī)定該廠產(chǎn)品次品率不超過4方能出廠。今從1000件產(chǎn)品中抽出10件,經(jīng)檢驗有4件次品,問這批產(chǎn)品是否能出廠? 如果假設(shè)這批產(chǎn)品的次品率P4,則可計算事件“抽10件產(chǎn)品有4件次品”的出現(xiàn)概率為: 可見,概率是相當(dāng)小的,1萬次實驗中可能出現(xiàn)4次,然而概率如此小的事件,在一次實驗中居然發(fā)生了,這是不合理的,而不合理的根源在于假設(shè)次品率P4 ,因而認為假設(shè)次品率P4是不能成立的,故按質(zhì)檢部門的規(guī)定,這批產(chǎn)品不能出廠。第12頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗的基本思想.

8、因此我們拒絕假設(shè) = 50. 如果這是總體的真實均值樣本均值 = 50抽樣分布H0這個值不像我們應(yīng)該得到的樣本均值 .20第13頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗的兩個特點:第一,假設(shè)檢驗采用邏輯上的反證法,即為了檢驗一個假設(shè)是否成立,首先假設(shè)它是真的,然后對樣本進行觀察,如果發(fā)現(xiàn)出現(xiàn)了不合理現(xiàn)象,則可以認為假設(shè)是不合理的,拒絕假設(shè)。否則可以認為假設(shè)是合理的,接受假設(shè)。第14頁,共75頁,2022年,5月20日,1點46分,星期一第二,假設(shè)檢驗采用的反證法帶有概率性質(zhì)。所謂假設(shè)的不合理不是絕對的,而是基于實踐中廣泛采用的小概率事件幾乎不可能發(fā)生的原則。至于事件的概

9、率小到什么程度才算是小概率事件,并沒有統(tǒng)一的界定標(biāo)準(zhǔn),而是必須根據(jù)具體問題而定。如果一旦判斷失誤,錯誤地拒絕原假設(shè)會造成巨大損失,那么拒絕原假設(shè)的概率就應(yīng)定的小一些;如果一旦判斷失誤,錯誤地接受原假設(shè)會造成巨大損失,那么拒絕原假設(shè)的概率就應(yīng)定的大一些。小概率通常用表示,又稱為檢驗的顯著性水平。通常取0.05或0.01,即把概率不超過0.05或0.01的事件當(dāng)作小概率事件。第15頁,共75頁,2022年,5月20日,1點46分,星期一原假設(shè)和備擇假設(shè)假設(shè)檢驗中,我們稱作為檢驗對象的待檢驗假設(shè)為原假設(shè)或零假設(shè),用H0表示。原假設(shè)的對立假設(shè)稱為備擇假設(shè)或備選假設(shè),用H1表示。例如,設(shè) 為總體均值 的

10、某一確定值。(1)對于總體均值是否等于某一確定值的原假設(shè)可以表示為: H0: (如H0: 3190克) 其對應(yīng)的備擇假設(shè)則表示為: H1: (如H1: 3190克)第16頁,共75頁,2022年,5月20日,1點46分,星期一原假設(shè)和備擇假設(shè)(2)對于總體均值X是否大于某一確定值X0 的原假設(shè)可以表示為: H0:XX0 (如H0:X2000克) 其對應(yīng)的備擇假設(shè)則表示為: H1:XX0 (如H1: X 2000克)(3)對于總體均值X是否小于某一確定值X0的原假設(shè)可以表示為: H0:XX0 (如H0:X 5) 其對應(yīng)的備擇假設(shè)則表示為: H1:XX0 (如H1:X5) 注意:原假設(shè)總是有等號:

11、 或 或。第17頁,共75頁,2022年,5月20日,1點46分,星期一3、雙側(cè)檢驗和單側(cè)檢驗根據(jù)假設(shè)的形式不同,假設(shè)檢驗可以分為雙側(cè)假設(shè)檢驗和單側(cè)假設(shè)檢驗。若原假設(shè)是總體參數(shù)等于某一數(shù)值,如H0: X X0 ,即備擇假設(shè)H1: X X 0,那么只要X X 0和X X 0 二者中有一個成立,就可以否定原假設(shè)。這種假設(shè)檢驗稱為雙側(cè)檢驗。若原假設(shè)是總體參數(shù)大于等于或小于等于某一數(shù)值,如H0: X X 0 (即H1:XX0);或H0 :XX0 (即H1:XX0),那么對于前者當(dāng)XX0時,對于后者當(dāng)XX0 時,可以否定原假設(shè)。這種假設(shè)檢驗稱為單側(cè)檢驗??梢苑譃樽髠?cè)檢驗和右側(cè)檢驗。第18頁,共75頁,2

12、022年,5月20日,1點46分,星期一雙側(cè)檢驗與單側(cè)檢驗 (假設(shè)的形式)假設(shè)研究的問題(總體均值檢驗)雙側(cè)檢驗左側(cè)檢驗右側(cè)檢驗H0X= X0X X 0X X 0H1X X 0X X 0第19頁,共75頁,2022年,5月20日,1點46分,星期一4、假設(shè)檢驗中的拒絕域和接受域在規(guī)定了檢驗的顯著性水平后,根據(jù)容量為n的樣本,按照統(tǒng)計量的理論概率分布規(guī)律,可以確定據(jù)以判斷拒絕和接受原假設(shè)的檢驗統(tǒng)計量的臨界值。臨界值將統(tǒng)計量的所有可能取值區(qū)間分為兩個互不相交的部分,即原假設(shè)的拒絕域和接受域。對于正態(tài)總體,總體均值的假設(shè)檢驗可有如下圖示:第20頁,共75頁,2022年,5月20日,1點46分,星期一

13、正態(tài)總體,總體均值假設(shè)檢驗圖示:(1) 雙側(cè)檢驗設(shè)H0:XX0 , H1:XX0,有兩個臨界值,兩個拒絕域,每個拒絕域的面積為/2。也稱雙尾檢驗。雙側(cè)檢驗示意圖X0第21頁,共75頁,2022年,5月20日,1點46分,星期一雙側(cè)檢驗示意圖(顯著性水平與拒絕域 ) 抽樣分布H0值臨界值臨界值a/2 a/2 樣本統(tǒng)計量拒絕域拒絕域接受域1 - 置信水平第22頁,共75頁,2022年,5月20日,1點46分,星期一雙側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值臨界值a/2 a/2 樣本統(tǒng)計量拒絕域拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第23頁,共75頁,2022年,5月20日

14、,1點46分,星期一雙側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值臨界值 a/2 a/2 樣本統(tǒng)計量拒絕域拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第24頁,共75頁,2022年,5月20日,1點46分,星期一雙側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值臨界值a/2 a/2 樣本統(tǒng)計量拒絕域拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第25頁,共75頁,2022年,5月20日,1點46分,星期一(2)單側(cè)檢驗有一個臨界值,一個拒絕域,拒絕域的面積為。分為左側(cè)檢驗和右側(cè)檢驗兩種情況。 單側(cè)檢驗示意圖(顯著性水平與拒絕域) H0值臨界值a樣本統(tǒng)計量拒絕域接受域抽

15、樣分布1 - 置信水平第26頁,共75頁,2022年,5月20日,1點46分,星期一左側(cè)檢驗設(shè)H0:XX0 ,H1:XX0;臨界值和拒絕域均在左側(cè)。也稱下限檢驗。X0第27頁,共75頁,2022年,5月20日,1點46分,星期一左側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值a樣本統(tǒng)計量拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第28頁,共75頁,2022年,5月20日,1點46分,星期一左側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值a樣本統(tǒng)計量拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第29頁,共75頁,2022年,5月20日,1點46分,星期一右側(cè)檢驗設(shè)H

16、0 :XX0 ,H1:XX0; 臨界值和拒絕域均在右側(cè)。也稱上限檢驗。X0第30頁,共75頁,2022年,5月20日,1點46分,星期一右側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值a樣本統(tǒng)計量拒絕域接受域抽樣分布1 - 置信水平觀察到的樣本統(tǒng)計量第31頁,共75頁,2022年,5月20日,1點46分,星期一右側(cè)檢驗示意圖(顯著性水平與拒絕域 ) H0值臨界值a樣本統(tǒng)計量接受域抽樣分布1 - 置信水平拒絕域觀察到的樣本統(tǒng)計量第32頁,共75頁,2022年,5月20日,1點46分,星期一5、假設(shè)檢驗的兩類錯誤根據(jù)假設(shè)檢驗做出判斷無非下述四種情況:1、原假設(shè)真實, 并接受原假設(shè),判斷正確;2

17、、原假設(shè)不真實,且拒絕原假設(shè),判斷正確;3、原假設(shè)真實, 但拒絕原假設(shè),判斷錯誤;4、原假設(shè)不真實,卻接受原假設(shè),判斷錯誤。假設(shè)檢驗是依據(jù)樣本提供的信息進行判斷,有犯錯誤的可能。所犯錯誤有兩種類型:第一類錯誤是原假設(shè)H0為真時,檢驗結(jié)果把它當(dāng)成不真而拒絕了。犯這種錯誤的概率用表示,也稱作錯誤(error)或棄真錯誤。第二類錯誤是原假設(shè)H0不為真時,檢驗結(jié)果把它當(dāng)成真而接受了。犯這種錯誤的概率用表示,也稱作錯誤(error)或取偽錯誤。第33頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗的兩類錯誤正確決策和犯錯誤的概率可以歸納為下表:假設(shè)檢驗中各種可能結(jié)果的概率接受H0拒絕H0

18、,接受H1H0 為真1-(正確決策)(棄真錯誤)H0 為偽(取偽錯誤)1-(正確決策)第34頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗兩類錯誤關(guān)系的圖示以單側(cè)上限檢驗為例,設(shè)H0 :XX0 ,H1:XX0從上圖可以看出,如果臨界值沿水平方向右移,將變小而變大,即若減小錯誤,就會增大犯錯誤的機會;如果臨界值沿水平方向左移,將變大而變小,即若減小錯誤,也會增大犯錯誤的機會。圖(a) XX0H0為真圖(b)XX1X0H0為偽第35頁,共75頁,2022年,5月20日,1點46分,星期一 錯誤和 錯誤的關(guān)系你不能同時減少兩類錯誤!和的關(guān)系就像翹翹板,小就大, 大就小在樣本容量n一

19、定的情況下,假設(shè)檢驗不能同時做到犯和兩類錯誤的概率都很小。若減小錯誤,就會增大犯錯誤的機會;若減小錯誤,也會增大犯錯誤的機會。要使和同時變小只有增大樣本容量。但樣本容量增加要受人力、經(jīng)費、時間等很多因素的限制,無限制增加樣本容量就會使抽樣調(diào)查失去意義。因此假設(shè)檢驗需要慎重考慮對兩類錯誤進行控制的問題。第36頁,共75頁,2022年,5月20日,1點46分,星期一兩類錯誤的控制準(zhǔn)則假設(shè)檢驗中人們普遍執(zhí)行同一準(zhǔn)則:首先控制棄真錯誤(錯誤)。假設(shè)檢驗的基本法則以為顯著性水平就體現(xiàn)了這一原則。兩個理由:統(tǒng)計推斷中大家都遵循統(tǒng)一的準(zhǔn)則,討論問題會比較方便。更重要的是: 原假設(shè)常常是明確的,而備擇假設(shè)往往

20、是模糊的。如H0:XX0很清楚, 而H1:XX0則不太清楚,是XX0還是XX0 ?大多少小多少都不清楚。對含義清晰的數(shù)量標(biāo)準(zhǔn)進行檢驗更容易被接受。因此,第一類錯誤成為控制兩類錯誤的重點。第37頁,共75頁,2022年,5月20日,1點46分,星期一6、假設(shè)檢驗的步驟根據(jù)研究需要提出原假設(shè)H0和備擇假設(shè)H1確定適當(dāng)?shù)臋z驗統(tǒng)計量確定顯著性水平和臨界值及拒絕域根據(jù)樣本數(shù)據(jù)計算檢驗統(tǒng)計量的值(或P值)將檢驗統(tǒng)計量值與臨界值比較,作出拒絕或接受原假設(shè)的決策第38頁,共75頁,2022年,5月20日,1點46分,星期一假設(shè)檢驗的步驟根據(jù)研究需要提出原假設(shè)H0和備擇假設(shè)H1應(yīng)該注意: 對任一假設(shè)檢驗問題,其

21、所有可能結(jié)果均應(yīng)包括在所提出的兩個對立假設(shè)中,原假設(shè)與對立假設(shè)總有一個、也只能有一個成立。 原假設(shè)一定要有等號: 或 或。 原假設(shè)不是隨意提出的,應(yīng)該本著“不輕易拒絕原假設(shè)”的原則。第39頁,共75頁,2022年,5月20日,1點46分,星期一雙側(cè)檢驗原假設(shè)與備擇假設(shè)的確定雙側(cè)檢驗屬于決策中的假設(shè)檢驗。即不論是拒絕H0還是接受H0,都必需采取相應(yīng)的行動措施。例如,某種零件的尺寸,要求其平均長度為10厘米,大于或小于10厘米均屬于不合格。待檢驗問題是該企業(yè)生產(chǎn)的零件平均長度是10厘米嗎?(屬于決策中的假設(shè))則建立的原假設(shè)與備擇假設(shè)應(yīng)為 H0: X = 10 H1: X 10第40頁,共75頁,2

22、022年,5月20日,1點46分,星期一單側(cè)檢驗原假設(shè)與備擇假設(shè)的確定應(yīng)區(qū)別不同情況采取不同的建立假設(shè)方法。對于檢驗?zāi)稠椦芯渴欠襁_到了預(yù)期效果一般是將研究的預(yù)期效果(希望、想要證明的假設(shè))作為備擇假設(shè)H1,將認為研究結(jié)果無效作為原假設(shè)H0。先確立備擇假設(shè)H1。因為只有當(dāng)檢驗結(jié)果與原假設(shè)有明顯差別時才能拒絕原假設(shè)而接受備擇假設(shè),原假設(shè)不會輕易被拒絕,就使得希望得到的結(jié)論不會輕易被接受,從而減少結(jié)論錯誤。例如,有研究預(yù)計,采用新技術(shù)生產(chǎn)后將會使某產(chǎn)品的使用壽命明顯延長到1500小時以上。則建立的原假設(shè)與備擇假設(shè)應(yīng)為: H0: X 1500 H1: X 1500例如,有研究預(yù)計,改進生產(chǎn)工藝后會使某

23、產(chǎn)品的廢品率降低到2%以下。則建立的原假設(shè)與備擇假設(shè)應(yīng)為: H0: X 2% H1: X 2%第41頁,共75頁,2022年,5月20日,1點46分,星期一單側(cè)檢驗原假設(shè)與備擇假設(shè)的確定對于檢驗?zāi)稠椔暶鞯挠行砸话憧蓪⑺鞯穆暶髯鳛樵僭O(shè)。將對該聲明的質(zhì)疑作為備擇假設(shè)。先確立原假設(shè)H0。因為除非有證據(jù)表明“聲明”無效,否則就應(yīng)認為該“聲明”是有效的。例如,某燈泡制造商聲稱,該企業(yè)生產(chǎn)的燈泡平均使用壽命在1000小時以上。通常除非樣本能提供證據(jù)表明使用壽命在1000小時以下,否則就應(yīng)認為廠商的聲稱是正確的。建立的原假設(shè)與備擇假設(shè)應(yīng)為: H0: X 1000 H1: X 1000第42頁,共75頁

24、,2022年,5月20日,1點46分,星期一對于上述問題還可以結(jié)合不同背景建立假設(shè)。同樣的問題背景不同可以采用不同的原假設(shè)。例如,一商店經(jīng)常從某工廠購進某種商品,該商品質(zhì)量指標(biāo)為X,X值愈大商品質(zhì)量愈好。商店提出的進貨條件是按批驗收,只有通過假設(shè)“XX0 ”檢驗的批次才能接受。有兩種可能情況:第43頁,共75頁,2022年,5月20日,1點46分,星期一如果根據(jù)過去較長時間購貨記錄,商店相信該廠產(chǎn)品質(zhì)量好,于是同意把原假設(shè)定為XX0 ,而且選擇較低的檢驗顯著性水平。這對工廠是有利的,使得達到質(zhì)量標(biāo)準(zhǔn)的產(chǎn)品以很小的概率被拒收。雖然這會使商店面臨接受不合標(biāo)準(zhǔn)產(chǎn)品的風(fēng)險,但歷史記錄顯示出現(xiàn)這種情況的

25、可能性很小,而且商店也可因此獲得較好的貨源。如果過去一段時期的記錄表明,該廠產(chǎn)品質(zhì)量并不理想,商店則會堅持以XX0為原假設(shè),并選定較小的檢驗顯著性水平。這對商店是有利的,不會輕易地拒絕原假設(shè),有 1的可能把劣質(zhì)產(chǎn)品拒之門外。第44頁,共75頁,2022年,5月20日,1點46分,星期一確定適當(dāng)?shù)臋z驗統(tǒng)計量假設(shè)檢驗根據(jù)檢驗內(nèi)容和條件不同需要采用不同的檢驗統(tǒng)計量。在一個正態(tài)總體的參數(shù)檢驗中,Z統(tǒng)計量和t統(tǒng)計量常用于均值和比例的檢驗,2統(tǒng)計量用于方差的檢驗。選擇統(tǒng)計量需考慮的因素有被檢驗的參數(shù)類型、總體方差是否已知、用于檢驗的樣本量大小等。Z 檢驗(單尾和雙尾) t 檢驗(單尾和雙尾)Z 檢驗(單尾

26、和雙尾) 2檢驗(單尾和雙尾)均值一個總體成數(shù)方差第45頁,共75頁,2022年,5月20日,1點46分,星期一確定顯著性水平和臨界值及拒絕域顯著性水平是當(dāng)原假設(shè)為正確時被拒絕的概率,是由研究者事先確定的。顯著性水平的大小應(yīng)根據(jù)研究需要的精確度和可靠性而定。通常取0.05或0.01,即接受原假設(shè)的決定是正確的可能性(概率)為95或99。根據(jù)給定的顯著性水平,查表得出相應(yīng)的臨界值,同時指定拒絕域。第46頁,共75頁,2022年,5月20日,1點46分,星期一根據(jù)樣本數(shù)據(jù)計算檢驗統(tǒng)計量的值例如,總體標(biāo)準(zhǔn)差已知時根據(jù)樣本均值計算統(tǒng)計量Z的公式為將檢驗統(tǒng)計量的值與臨界值比較,作出拒絕或接受原假設(shè)的決策

27、如果檢驗統(tǒng)計量的值落入拒絕域,則拒絕原假設(shè),接受備擇假設(shè);如果檢驗統(tǒng)計量的值落入接受域,則接受原假設(shè),拒絕備擇假設(shè)。第47頁,共75頁,2022年,5月20日,1點46分,星期一二、總體均值的假設(shè)檢驗第48頁,共75頁,2022年,5月20日,1點46分,星期一總體方差2已知時均值的檢驗假定條件總體服從正態(tài)分布若總體不服從正態(tài)分布, 可用正態(tài)分布來近似(要求n30)使用Z統(tǒng)計量第49頁,共75頁,2022年,5月20日,1點46分,星期一1.總體方差2 已知時均值的雙側(cè)檢驗 (舉例)【例4】某機床廠加工一種零件,根據(jù)經(jīng)驗知道,以前加工零件的橢圓度近似服從正態(tài)分布,其總體均值為X0=0.081m

28、m,總體標(biāo)準(zhǔn)差為=0.025 。今換一種新機床進行加工,抽取n=200個零件進行檢驗,得到的橢圓度均值為0.076mm。試問新機床加工零件的橢圓度均值與以前有無顯著差異?(0.05)屬于決策中的假設(shè)!第50頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:X0=0.081mm,=0.025,n=200, 提出假設(shè):假定橢圓度與以前無顯著差異 H0: X= 0.081 H1: X 0.081=0.05雙側(cè)檢驗/2=0.025 查表得臨界值:Z0.025=1.96Z01.96-1.960.025拒絕 H0拒絕 H00.025決策:Z值落入拒絕域,在=0.05的水平上拒絕H0結(jié)論:有

29、證據(jù)表明新機床加工的零件的橢圓度與以前有顯著差異得兩個拒絕域: (-,-1.96)和(1.96,)計算檢驗統(tǒng)計量值:第51頁,共75頁,2022年,5月20日,1點46分,星期一2.總體方差2 已知時均值的單側(cè)檢驗 左側(cè):H0:X X0 H1:XX0統(tǒng)計量值必須顯著地大于X0才能拒絕H0 ,小于X0的值滿足 H0 ,不能拒絕Z0拒絕 H0第52頁,共75頁,2022年,5月20日,1點46分,星期一總體方差2已知時均值的單側(cè)檢驗(左檢驗舉例)【例5】某批發(fā)商欲從生產(chǎn)廠家購進一批燈泡,根據(jù)合同規(guī)定,燈泡的使用壽命平均不能低于1000小時。已知燈泡使用壽命服從正態(tài)分布,標(biāo)準(zhǔn)差為20小時。在總體中隨

30、機抽取100只燈泡,測得樣本均值為960小時。批發(fā)商是否應(yīng)該購買這批燈泡? (0.05)屬于檢驗聲明的有效性!第53頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:X0=1000小時,=20,n=100, 提出假設(shè):假定使用壽命平均不低于1000小時 H0:X 1000 H1: X 1020 = 0.05 右檢驗臨界值為正得臨界值:Z0.05=1.645計算檢驗統(tǒng)計量值: Z值落入拒絕域,在=0.05的顯著性水平上拒絕H0,接受H1有證據(jù)表明這批燈泡的使用壽命有顯著提高決策:結(jié)論:Z0拒絕域0.051.645得拒絕域:(1.645, )第56頁,共75頁,2022年,5月20

31、日,1點46分,星期一總體方差2未知時均值的檢驗假定條件:總體為正態(tài)分布2未知時檢驗所依賴信息有所減少,樣本統(tǒng)計量服從t分布,與正態(tài)分布相比在概率相同條件下t分布臨界點距中心的距離更遠,意味著推斷精度有所下降使用t 統(tǒng)計量,其自由度為n-1,s為樣本標(biāo)準(zhǔn)差n較小時t分布與z分布差異明顯,隨著n增大二者差異逐漸縮小,因此在大樣本條件下2未知也可以用z統(tǒng)計量進行檢驗第57頁,共75頁,2022年,5月20日,1點46分,星期一1.總體方差2 未知時均值的雙側(cè)檢驗 (舉例)【例7】某廠采用自動包裝機分裝產(chǎn)品,假定每包產(chǎn)品的重量服從正態(tài)分布,每包標(biāo)準(zhǔn)重量為1000克。某日隨機抽查9包,測得樣本平均重量

32、為986克,樣本標(biāo)準(zhǔn)差為24克。試問在0.05的顯著性水平上,能否認為這天自動包裝機工作正常?屬于決策中的假設(shè)!第58頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:X0=1000克,s=24,n=9,提出假設(shè):假定每包產(chǎn)品的重量與標(biāo)準(zhǔn)重量無顯著差異 H0: X=1000 H1: X1000=0.05雙側(cè)檢驗/2=0.025df =9-1=8 得臨界值:t0.025(8)=2.306計算檢驗統(tǒng)計量值: t值落入接受域,在=0.05的顯著性水平上接受H0有證據(jù)表明這天自動包裝機工作正常決策:結(jié)論:t02.306-2.3060.025拒絕 H0拒絕 H00.025得兩個拒絕域:

33、(-,-2.306)和(2.306,)第59頁,共75頁,2022年,5月20日,1點46分,星期一2.總體方差2 未知時均值的單側(cè)檢驗 (舉例)【例8】一個汽車輪胎制造商聲稱,某一等級的輪胎的平均壽命在一定的汽車重量和正常行駛條件下大于40000公里,對一個由20個輪胎組成的隨機樣本作了試驗,測得平均值為41000公里,標(biāo)準(zhǔn)差為5000公里。已知輪胎壽命的公里數(shù)服從正態(tài)分布,我們能否根據(jù)這些數(shù)據(jù)作出結(jié)論,該制造商的產(chǎn)品同他所說的標(biāo)準(zhǔn)相符?(=0.05)屬于檢驗聲明有效性的假設(shè)!第60頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:X0=40000公里,s=5000,n=20

34、, 提出假設(shè):假定平均壽命不低于40000公里 H0: X 40000 H1: X5,n(1-p)5)2. 使用Z統(tǒng)計量 P0為假設(shè)的總體成數(shù)。分母為樣本成數(shù)的抽樣標(biāo)準(zhǔn)差,一般采用P0計算,也有人認為可以用樣本成數(shù)p計算。第63頁,共75頁,2022年,5月20日,1點46分,星期一總體成數(shù)的檢驗(雙側(cè)檢驗舉例)【例9】某研究者估計本市居民家庭的電腦擁有率為30%?,F(xiàn)隨機抽查了200個家庭,其中68個家庭擁有電腦。試問研究者的估計是否可信? (=0.05)屬于決策中的假設(shè)!第64頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:P0=0.3,n=200, 提出假設(shè):假定估計可信

35、 H0: P0=0.3 H1: p00.3=0.05雙側(cè)檢驗/2=0.025 得臨界值:Z0.025=1.96計算檢驗統(tǒng)計量值:Z值落入接受域,在=0.05的水平上接受H0有證據(jù)表明研究者的估計可信決策:結(jié)論:Z01.96-1.960.025拒絕 H0拒絕 H00.025得兩個拒絕域: (-,-1.96)和(1.96,)第65頁,共75頁,2022年,5月20日,1點46分,星期一總體成數(shù)的檢驗(單側(cè)檢驗舉例)【例10】某公司估計有75%以上的消費者滿意其產(chǎn)品的質(zhì)量。某調(diào)查公司受該公司委托調(diào)查此估計是否屬實。現(xiàn)隨機抽查了625位消費者,其中表示對該公司產(chǎn)品滿意的有500人。試問該公司的估計是否

36、屬實? (=0.05)屬于研究中的假設(shè)!第66頁,共75頁,2022年,5月20日,1點46分,星期一解:已知:P0=0.75,n=625, 提出假設(shè):假定滿意者不超過75 H0: P0.75 H1: P0.75=0.05 右檢驗臨界值為正得臨界值:Z0.05=1.645計算檢驗統(tǒng)計量值: Z值落入拒絕域,在=0.05的水平上拒絕H0,接受H1有證據(jù)表明該公司的估計屬實決策:結(jié)論:Z0拒絕域0.051.645得拒絕域:(1.645, )第67頁,共75頁,2022年,5月20日,1點46分,星期一關(guān)于單側(cè)檢驗如何建立假設(shè)單側(cè)檢驗應(yīng)區(qū)別不同情況采取不同的建立假設(shè)方法??梢园严M?想要)證明的假設(shè)作為備擇假設(shè),將相反情況作為原假設(shè)。由于原假設(shè)不容易被拒絕,因此只有檢驗結(jié)果與原假設(shè)有明顯差別時才能拒絕原假設(shè)而接受備擇假設(shè),這就使得希望得到的結(jié)論不是輕易被接受,從而減少結(jié)論錯誤。第68頁,共75頁,2022年,5月20日,1點46分,星期一還可以考慮統(tǒng)計量取值的正負,使統(tǒng)計量(Z)與臨界值(Z)位于同一方向。當(dāng)統(tǒng)計量值為負時,通常選XX0 為原假設(shè),XX0為備擇假設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論