版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2010屆高三數(shù)學總復習專題突破訓練:圓錐曲線 一、選擇題1、(2009揭陽)若點到直線的距離比它到點的距離小2,則點的軌跡方程為()AA. B. C. D.2、(2009吳川)若圓的圓心到直線的距離為,則a的值為( )CA-2或2BC2或0D-2或03、(2009廣東四校)設F1、F2為曲線C1: EQ F(x2,6) + EQ F(y2,2) =1的焦點,P是曲線:與C1的一個交點,則PF1F2的面積為()C(A) EQ F(1,4) (B) 1 (C) EQ R(2) (D) 2 EQ R(2) 4、(2009珠海)經(jīng)過拋物線的焦點且平行于直線的直線的方程是( A )A. B. C. D
2、. 5、(2009惠州)若拋物線的焦點與橢圓的右焦點重合,則的值為( ) DA B C D6、(2009汕頭)如圖,過拋物線的焦點F的直線l交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )BA BCD7、(2009廣東六校)以的頂點為焦點,長半軸長為4的橢圓方程為()DA B. C. D.8、(2009廣州)已知雙曲線的中心在原點, 右焦點與拋物線的焦點重合,則該雙曲線的離心率等于( ) D A. B. C. D. 二、解答題1、(2009廣東揭陽)已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為(
3、1) 若橢圓的離心率,求的方程;(2)若的圓心在直線上,求橢圓的方程2、(2009廣東潮州)橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。 (1)求橢圓的方程; (2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。3、(2009珠海期末)已知橢圓的方程為雙曲線的兩條漸近線為和,過橢圓的右焦點作直線,使得于點,又與交于點,與橢圓的兩個交點從上到下依次為(如圖).(1)當直線的傾斜角為,雙曲線的焦距為8時,求橢圓的方程;(2)設,證明:為常數(shù). 4、(2009潮南)橢圓的中心是原點O,它的短軸長為2,相應于焦點F(c,0)(c0)的
4、準線(準線方程x=,其中a為長半軸,c為半焦距)與x軸交于點A,過點A的直線與橢圓相交于點P、Q。求橢圓方程;求橢圓的離心率;若,求直線PQ的方程。5、(2009廣東四校)已知A(2,0)、B(2,0),點C、點D依次滿足 (1)求點D的軌跡方程; (2)過點A作直線l交以A、B為焦點的橢圓于M、N兩點,線段MN的中點到y(tǒng)軸的距離為,且直線l與點D的軌跡相切,求該橢圓的方程.6、(天河)若橢圓過點(-3,2),離心率為,O的圓心為原點,直徑為橢圓的短軸,M的方程為,過M上任一點P作O的切線PA、PB,切點為A、B.()求橢圓的方程;()若直線PA與M的另一交點為Q,當弦PQ最大時,求直線PA的
5、直線方程;()求的最大值與最小值.7、(2009金山)已知A、B分別是橢圓的左右兩個焦點,O為坐標原點,點P)在橢圓上,線段PB與y軸的交點M為線段PB的中點。 (1)求橢圓的標準方程; (2)點C是橢圓上異于長軸端點的任意一點,對于ABC,求的值。8、(2009金山)已知曲線C:xy=1,過C上一點作一斜率為的直線交曲線C于另一點,點列的橫坐標構成數(shù)列,其中(1)求與的關系式;(2)求證:是等比數(shù)列;(3)求證:。9、(2009廣東六校一)已知點和直線:,動點到點的距離與到直線的距離之比為(I)求動點的軌跡方程;xyOFlMN(II)設過點F的直線交動點的軌跡于A、B兩點,并且線段AB的中點
6、在直線上,求直線AB的方程10、(2009朝陽一中)設橢圓的左右焦點分別為、,是橢圓上的一點,且,坐標原點到直線的距離為()求橢圓的方程;()設是橢圓上的一點,過點的直線交軸于點,交軸于點,若,求直線的斜率11、(2009中山一中)已知動圓過定點,且與直線相切.(1) 求動圓的圓心軌跡的方程;(2) 是否存在直線,使過點,并與軌跡交于兩點,且滿足?若存在,求出直線的方程;若不存在,說明理由.12、(2009廣東五校)設、分別是橢圓的左、右焦點.()若是該橢圓上的一個動點,求的最大值和最小值;()設過定點的直線與橢圓交于不同的兩點、,求直線的斜率的取值范圍.祥細答案1、解:(1)當時,點,,-2
7、分設的方程為 由過點F,B,C得-5分由聯(lián)立解得,-7分所求的的方程為-8分(2)過點F,B,C三點,圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為-9分BC的中點為,BC的垂直平分線方程為-10分由得,即-11分P在直線上, 由得 橢圓的方程為-14分2、解:(1)依題意,設橢圓方程為,則其右焦點坐標為, 2分由,得,即,解得。 4分 又 , ,即橢圓方程為。 5分(2)由知點在線段的垂直平分線上,由消去得即 (*) 7分由,得方程(*)的,即方程(*)有兩個不相等的實數(shù)根。8分設、,線段的中點,則, ,即 10分,直線的斜率為,11分由,得, 12分 ,解得:
8、,即, 13分又,故 ,或, 存在直線滿足題意,其傾斜角,或。 14分3、解:(1)由已知,2分解得:, 4分所以橢圓的方程是:. 5分(2)解法1:設由題意得: 直線的方程為: ,直線的方程為: ,7分則直線的方程為: ,其中點的坐標為; 8分由 得: ,則點; 9分由 消y得:,則; 10分由得:,則:,同理由得:, 12分故為常數(shù). 14分解法2:過作軸的垂線,過分別作的垂線,垂足分別為,6分由題意得: 直線的方程為: ,直線的方程為: ,8分則直線的方程為: ,其中點的坐標為; 9分由 得: ,則直線m為橢圓E的右準線; 10分則: ,其中e的離心率; 12分, 故為常數(shù). 14分4、
9、解:(1)由已知得,解得:2分所求橢圓方程為4分(2)因,得7分(3)因點即A(3,0),設直線PQ方程為8分則由方程組,消去y得:設點則10分因,得,又,代入上式得,故解得:,所求直線PQ方程為14分5、解:(1)設C、D點的坐標分別為C(,D,則),, 則,故 又 代入中, 整理得,即為所求點D的軌跡方程. (2)易知直線與軸不垂直,設直線的方程為 .又設橢圓方程為 .因為直線:kxy+2k=0與圓相切.故,解得將代入整理得, 將代入上式,整理得 ,設M(,N(,則,由題意有,求得.經(jīng)檢驗,此時的判別式故所求的橢圓方程為6、解:()由題意得: 所以橢圓的方程為 ()由題可知當直線PA過圓M
10、的圓心(8,6)時,弦PQ最大因為直線PA的斜率一定存在, 設直線PA的方程為:y-6=k(x-8) 又因為PA與圓O相切,所以圓心(0,0)到直線PA的距離為 即 可得 所以直線PA的方程為: ()設 則 則 7、解:(1)點是線段的中點 是的中位線又 -2分 -7分 橢圓的標準方程為=1 -8分 (2)點C在橢圓上,A、B是橢圓的兩個焦點ACBC2a,AB2c2 -10分在ABC中,由正弦定理, -12分 -14分8、解:(1)過C:上一點作斜率為的直線交C于另一點, 則, -3分于是有: 即: -4分(2)記,則, -6分因為,因此數(shù)列是等比數(shù)列。 -8分(3)由(2)可知:,。 -9分
11、 當n為偶數(shù)時有:=, -11分于是在n為偶數(shù)時有:。 -12分在n為奇數(shù)時,前n-1項為偶數(shù)項,于是有:。 -13分綜合可知原不等式得證。 -14分9、解:(I)設動點的坐標為,由于動點到點的距離與到直線的距離之比為,故, 2分化簡得:,這就是動點的軌跡方程 6分(II)設直線AB的方程為代入,整理得直線AB過橢圓的左焦點F,方程有兩個不等實根, 8分記,中點,則線段AB的中點在直線上,或 10分當直線AB與軸垂直時,線段AB的中點F不在直線上,直線AB的方程是或 14分10、解: ()由題設知由于,則有,所以點的坐標為.2分故所在直線方程為3分所以坐標原點到直線的距離為又,所以 解得:.5分所求橢圓的方程為7分()由題意可知直線的斜率存在,設直線斜率為直線的方程為,則有9分設,由于、三點共線,且根據(jù)題意得解得或12分又在橢圓上,故或解得綜上,直線的斜率為或.14分11、解:(1)設為動圓圓心,由題意知:到定直線的距離,由拋物線的定義知,點的軌跡為拋物線,其中為焦點,為準線, 動圓的圓心的軌跡的方程為: 5分(2)由題意可設直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《密封件基礎知識》課件
- 2024年貴州建設職業(yè)技術學院單招職業(yè)技能測試題庫標準卷
- 單位管理制度集合大全人事管理十篇
- 單位管理制度匯編大全人事管理
- 單位管理制度合并匯編【人員管理】
- 單位管理制度呈現(xiàn)匯編職工管理篇十篇
- 單位管理制度呈現(xiàn)大全人員管理
- 《礦山勞動衛(wèi)生》課件
- 《生活中的問題》課件
- 《安全防護欄標準》課件
- 2024年加油站的年度工作總結范文(2篇)
- 甲醇制氫生產(chǎn)裝置計算書
- T-JSREA 32-2024 電化學儲能電站消防驗收規(guī)范
- 2025年上半年江蘇省常州市文廣旅局下屬事業(yè)單位招聘4人重點基礎提升(共500題)附帶答案詳解
- 2023-2024學年福建省泉州市石獅市三年級(上)期末數(shù)學試卷
- 新時代高校馬克思主義學院內(nèi)涵式發(fā)展的現(xiàn)狀和現(xiàn)實進路
- 【MOOC】隧道工程-中南大學 中國大學慕課MOOC答案
- 紅色經(jīng)典影片與近現(xiàn)代中國發(fā)展學習通超星期末考試答案章節(jié)答案2024年
- 劇作策劃與管理智慧樹知到期末考試答案2024年
- 鐵路基礎知識考試題庫500題(單選、多選、判斷)
- 2022年合理使用抗生素試題
評論
0/150
提交評論