![2021-2022學(xué)年云南省南澗彝族自治縣高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view/ef90d97c45181c9910081454444834aa/ef90d97c45181c9910081454444834aa1.gif)
![2021-2022學(xué)年云南省南澗彝族自治縣高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view/ef90d97c45181c9910081454444834aa/ef90d97c45181c9910081454444834aa2.gif)
![2021-2022學(xué)年云南省南澗彝族自治縣高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view/ef90d97c45181c9910081454444834aa/ef90d97c45181c9910081454444834aa3.gif)
![2021-2022學(xué)年云南省南澗彝族自治縣高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view/ef90d97c45181c9910081454444834aa/ef90d97c45181c9910081454444834aa4.gif)
![2021-2022學(xué)年云南省南澗彝族自治縣高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view/ef90d97c45181c9910081454444834aa/ef90d97c45181c9910081454444834aa5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回2答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
2、要求的。1在中,已知,為線段上的一點(diǎn),且,則的最小值為( )ABCD2劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為( )ABCD3直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA3-1B3-12C4已知函數(shù),給出下列四個(gè)結(jié)論:函數(shù)的值域是;函數(shù)為奇函數(shù);函數(shù)在區(qū)間單調(diào)遞減
3、;若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是( )ABCD5已知實(shí)數(shù)x,y滿足約束條件,若的最大值為2,則實(shí)數(shù)k的值為( )A1BC2D6小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為( )ABCD7已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )ABCD8已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)f(x)f(ax)(a1),則( )Asgng(x)sgn xBsgng(x)sgnxCsgng(x)sgnf(
4、x)Dsgng(x)sgnf(x)9若的展開式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為( )A85B84C57D5610已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),以為直徑的圓過且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為( )ABCD11若,則( )ABCD12已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為_.14設(shè)實(shí)數(shù),若函數(shù)的最大值為,則實(shí)數(shù)的最大值為_.15點(diǎn)P是ABC所在平面內(nèi)一點(diǎn)且在ABC內(nèi)任取一點(diǎn),則此點(diǎn)取自
5、PBC內(nèi)的概率是_16若變量,滿足約束條件,則的最大值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)ABC的內(nèi)角的對(duì)邊分別為,已知ABC的面積為(1)求;(2)若求ABC的周長.18(12分)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線C的極坐標(biāo)方程是.(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于兩點(diǎn)A,B,求線段的長.19(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn)(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)
6、過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo)20(12分)已知函數(shù)(1)當(dāng)時(shí),試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間21(12分)在中,角的對(duì)邊分別為,且滿足.()求角的大?。唬ǎ┤舻拿娣e為,求和的值.22(10分)在直角坐標(biāo)系中,圓的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.(1)求圓的極坐標(biāo)方程;(2)若直線:(為參數(shù))被圓截得的弦長為,求直線的傾斜角.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】在中,設(shè),結(jié)合三角形的內(nèi)
7、角和及和角的正弦公式化簡可求,可得,再由已知條件求得,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),即,即,即,又,則,所以,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,設(shè),則,消去得,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第
8、二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.2A【解析】設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.3A【解析】由直線x-3y+3=0過橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦
9、點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:求出a,c ,代入公式e=ca;只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得4C【解析】化的解析式為可判斷,求出的解析式可判斷,由得,結(jié)合正弦函數(shù)得圖象即可判斷,由得可判斷.【詳解】由題意,所以,故正確;為偶函數(shù),故錯(cuò)誤;當(dāng)時(shí),單調(diào)遞減,故正確;若對(duì)任
10、意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.5B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.6A【解析】利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【詳解】從
11、7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點(diǎn)睛】本題考查古典概型的概率計(jì)算問題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.7D【解析】根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a丨AF2丨丨AF1丨(1)p,利用雙曲線的離心率公式求得e【詳解】直線F2A的直線方程為:ykx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),設(shè)雙曲線方程為:1,丨AF1丨p,丨AF
12、2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,離心率e1,故選:D【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題8A【解析】根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)f(x)f(ax),而f(x)是R上的減函數(shù),當(dāng)x0時(shí),xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時(shí)sgng ( x)1,當(dāng)x0時(shí),xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時(shí)sgng ( x)0,當(dāng)x0時(shí),xax,則有f(x)f(ax),則g(x)f(x)f(ax)0,此時(shí)sgng ( x)1,綜
13、合有:sgng ( x)sgn(x);故選:A【點(diǎn)睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.9A【解析】先求,再確定展開式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開式中二項(xiàng)式系數(shù)和為256故,要求展開式中的有理項(xiàng),則則二項(xiàng)式展開式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.10B【解析】由雙曲線的對(duì)稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的對(duì)稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的
14、簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.11D【解析】直接利用二倍角余弦公式與弦化切即可得到結(jié)果【詳解】,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型12D【解析】列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分
15、。13【解析】根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:【點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.14【解析】根據(jù),則當(dāng)時(shí),即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因?yàn)?,又?dāng)時(shí),即.當(dāng)時(shí),顯然成立;當(dāng)時(shí),由等價(jià)于,令,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,則,又,得,因此的最大值為.故答案為:【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查
16、了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.15【解析】設(shè)是中點(diǎn),根據(jù)已知條件判斷出三點(diǎn)共線且是線段靠近的三等分點(diǎn),由此求得,結(jié)合幾何概型求得點(diǎn)取自三角形的概率.【詳解】設(shè)是中點(diǎn),因?yàn)?,所以,所以三點(diǎn)共線且點(diǎn)是線段靠近的三等分點(diǎn),故,所以此點(diǎn)取自內(nèi)的概率是故答案為:【點(diǎn)睛】本小題主要考查三點(diǎn)共線的向量表示,考查幾何概型概率計(jì)算,屬于基礎(chǔ)題.16【解析】根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時(shí),取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示: 將化為,則最大時(shí),直線在軸截距最大;由直線平移可知,當(dāng)過時(shí),在軸
17、截距最大,由得:,.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1)(2) .【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長為.點(diǎn)睛:在處理解三角形問題時(shí),要注意抓住題目所給的條件,
18、當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對(duì)的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.18(1)l:,C:;(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)由(1)可得曲線是圓,求出圓心坐標(biāo)及半徑,再求得圓心到直線
19、的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.圓心到直線的距離為:.【點(diǎn)睛】本題考查直線的普通坐標(biāo)方程、曲線的直角坐標(biāo)方程的求法,考查弦長的求法、運(yùn)算求解能力,是中檔題19(1);(2)或【解析】試題分析: 直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點(diǎn)的坐標(biāo).試題解析:(1)解:設(shè),由和圓相切,得由消去,并整理得,由,得,即,或(舍)當(dāng)時(shí),故直線的方程為(2)設(shè),則設(shè),由直線和圓相切,得,即設(shè),同理可得:故是方程的兩根,故由得,故同理,則,即,解或當(dāng)時(shí),;當(dāng)時(shí),故或20(1);(2)見解析【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo),可以求出曲線在點(diǎn)處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對(duì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年點(diǎn)火線圈項(xiàng)目申請(qǐng)報(bào)告模范
- 2025年建筑行業(yè)策劃策略與綠色施工協(xié)議書
- 2025年子女監(jiān)護(hù)權(quán)策劃補(bǔ)充協(xié)議的法律效力分析
- 2025年醫(yī)療器械供應(yīng)與醫(yī)療服務(wù)合作框架協(xié)議
- 2025年先進(jìn)汽車修理設(shè)施租賃合同
- 2025年停車場(chǎng)地承包經(jīng)營協(xié)議范本
- 2025年勞動(dòng)者家庭醫(yī)療保健策劃與子女援助協(xié)議
- 2025年?duì)幎焚r償和解協(xié)議格式
- 2025年合作導(dǎo)師協(xié)議范本
- 2025年農(nóng)業(yè)發(fā)展公司技術(shù)咨詢服務(wù)合同范本
- 質(zhì)量管理與產(chǎn)品質(zhì)量保障措施
- 全國自然教育中長期發(fā)展規(guī)劃
- 第四章-國防動(dòng)員
- 露天電影方案
- 2024年山東力明科技職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 裝配式預(yù)制混凝土框架結(jié)構(gòu)抗震性能研究
- 2024年長沙市房地產(chǎn)市場(chǎng)分析報(bào)告
- 造影劑對(duì)比劑外滲預(yù)防與處理課件
- 海爾集團(tuán)周云杰發(fā)表主題為《無界生態(tài) 無限可能》戰(zhàn)略報(bào)告
- 機(jī)修崗位述職個(gè)人述職報(bào)告
- 光伏發(fā)電項(xiàng)目 投標(biāo)方案(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論