版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高二下數(shù)學(xué)模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若非零向量,滿足,向量與垂直,則與的夾角為( )ABCD2若的展開式中含有項的系數(shù)為8,則( )A2BCD3不等式的解集為( )ABCD4設(shè)F是橢圓=1的右焦點,橢圓上至少有21個不同的點(i=1,2,3,),組成公差為d(d0)的等
2、差數(shù)列,則d的最大值為ABCD5下列說法正確的個數(shù)有( )用刻畫回歸效果,當(dāng)越大時,模型的擬合效果越差;反之,則越好;命題“,”的否定是“,”;若回歸直線的斜率估計值是,樣本點的中心為,則回歸直線方程是;綜合法證明數(shù)學(xué)問題是“由因索果”,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”。A1個B2個C3個D4個6 “三個臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強大. 假設(shè)李某智商較高,他獨自一人解決項目M的概率為;同時,有個水平相同的人也在研究項目M,他們各自獨立地解決項目M的概率都是.現(xiàn)在李某單獨研究項目M,且這個人組成的團隊也同時研究項目M,設(shè)這個人團隊解決項目M的概率為,若,則的最
3、小值是( )A3B4C5D67中國古代儒家提出的“六藝”指:禮樂射御書數(shù).某校國學(xué)社團預(yù)在周六開展“六藝”課程講座活動,周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“樂”與“書”不能相鄰,“射”和“御”要相鄰,則針對“六藝”課程講座活動的不同排課順序共有( )A18種B36種C72種D144種8如圖,梯形中,將沿對角線折起,設(shè)折起后點的位置為,使二面角為直二面角,給出下面四個命題: ;三棱錐的體積為;平面;平面平面;其中正確命題的個數(shù)是( )A1B2C3D49某三棱錐的三視圖如圖所示,則該三棱錐的體積為( )ABCD10在正方體中,與平面所成角的正弦值為( )ABCD11已知定義域為的奇函
4、數(shù),當(dāng)時,滿足,則( )ABCD12在一組數(shù)據(jù)為,(,不全相等)的散點圖中,若這組樣本數(shù)據(jù)的相關(guān)系數(shù)為,則所有的樣本點滿足的方程可以是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知是夾角為的兩個單位向量,則_14如圖,在長方形ABCD-中,設(shè)AD=A=1,AB=2,則等于_15已知、滿足,則的最小值為_.16已知函數(shù),若方程有個不等實根,則實數(shù)的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)世界那么大,我想去看看,每年高考結(jié)束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動機強烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個巨大的市場.
5、為了解高中畢業(yè)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某市的1000名畢業(yè)生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:組別0,20)20,40)40,60)60,80)80,100)頻數(shù)22504502908(1)求所得樣本的中位數(shù)(精確到百元);(2)根據(jù)樣本數(shù)據(jù),可近似地認為學(xué)生的旅游費用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計有多少位同學(xué)旅游費用支出在 8100元以上;(3)已知樣本數(shù)據(jù)中旅游費用支出在80,100)范圍內(nèi)的8名學(xué)生中有5名女生,3名男生, 現(xiàn)想選其中3名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.附:若,則,18(1
6、2分)甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標(biāo)分數(shù)進行劃分,其中分數(shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機抽取兩種產(chǎn)品各100件進行檢測,其結(jié)果如下:測試指標(biāo)分數(shù)甲產(chǎn)品81240328乙產(chǎn)品71840296 (1)根據(jù)以上數(shù)據(jù),完成下面的 列聯(lián)表,并判斷是否有 的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異?甲產(chǎn)品乙產(chǎn)品合計合格品次品合計 (2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記 為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品
7、的概率).附:0.150.100.050.0250.0100.0050.0012.7022.7063.8415.0246.6357.87910.82819(12分)選修4-5:不等式選講設(shè)的最小值為.(1)求實數(shù)的值;(2)設(shè),求證:.20(12分)直角坐標(biāo)系xoy中,橢圓的離心率為,過點.(1)求橢圓C的方程;(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.求直線的斜率;若,求直線的方程.21(12分)隨著國內(nèi)電商的不斷發(fā)展,快遞業(yè)也進入了高速發(fā)展時期,按照國務(wù)院的發(fā)展戰(zhàn)略布局,以及國家郵政管理總局對快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費的標(biāo)準(zhǔn)是:重量不超過1
8、kg的包裹收費10元;重量超過1kg的包裹,在收費10元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收5元.某縣SF分代辦點將最近承攬的100件包裹的重量統(tǒng)計如下:重量(單位:kg)(0,1(1,2(2,3(3,4(4,5件數(shù)43301584對近60天,每天攬件數(shù)量統(tǒng)計如下表:件數(shù)范圍0100101200201300301400401500件數(shù)50150250350450天數(shù)663016以上數(shù)據(jù)已做近似處理,將頻率視為概率.(1)計算該代辦點未來5天內(nèi)不少于2天攬件數(shù)在101300之間的概率;(2)估計該代辦點對每件包裹收取的快遞費的平均值;根據(jù)以往的經(jīng)驗,該代辦點將快遞費的三分之一
9、作為前臺工作人員的工資和公司利潤,其余的用作其他費用.目前該代辦點前臺有工作人員3人,每人每天攬件不超過150件,日工資110元.代辦點正在考慮是否將前臺工作人員裁減1人,試計算裁員前后代辦點每日利潤的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?22(10分)已知函數(shù).(1)當(dāng)時,求的極值;(2)當(dāng)時,討論的單調(diào)性;(3)若對任意的,恒有成立,求實數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,且與垂直,即,與的夾角為故選2、A【解析】展開式中含有項的系數(shù) , ,故選A.3、D【解析】利用指數(shù)函數(shù)的單
10、調(diào)性,得到關(guān)于的一元二次不等式,解得答案.【詳解】不等式,轉(zhuǎn)化為,因為指數(shù)函數(shù)單調(diào)遞增且定義域為,所以,解得.故不等式的解集為.故選:D.【點睛】本題考查解指數(shù)不等式,一元二次不等式,屬于簡單題.4、B【解析】求出橢圓點到的距離的最大值和最小值,再由等差數(shù)列的性質(zhì)得結(jié)論【詳解】橢圓中,而的最大值為,最小值為,故選B【點睛】本題考查橢圓的焦點弦的性質(zhì),考查等差數(shù)列的性質(zhì),難度不大5、C【解析】分析:結(jié)合相關(guān)系數(shù)的性質(zhì),命題的否定的定義,回歸方程的性質(zhì),推理證明即可分析結(jié)論.詳解:為相關(guān)系數(shù),相關(guān)系數(shù)的結(jié)論是:越大表明模擬效果越好,反之越差,故錯誤;命題“,”的否定是“,”;正確;若回歸直線的斜率
11、估計值是,樣本點的中心為,則回歸直線方程是;根據(jù)回歸方程必過樣本中心點的結(jié)論可得正確;綜合法證明數(shù)學(xué)問題是“由因索果”,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”。根據(jù)綜合法和分析法定義可得的描述正確;故正確的為:故選C.點睛:考查命題真假的判斷,對命題的逐一分析和對應(yīng)的定義,性質(zhì)的理解是解題關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】設(shè)這個人團隊解決項目的概率為,則,由,得,由此能求出的最小值【詳解】李某智商較高,他獨自一人解決項目的概率為,有個水平相同的人也在研究項目,他們各自獨立地解決項目的概率都是0.1,現(xiàn)在李某單獨研究項目,且這個人組成的團隊也同時研究,設(shè)這個人團隊解決項目的概率為,則,解得的最小值是1故
12、選【點睛】本題考查實數(shù)的最小值的求法,考查次獨立重復(fù)試驗中事件恰好發(fā)生次的概率的計算公式等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題7、D【解析】由排列、組合及簡單的計數(shù)問題得:由題意可將“射”和“御”進行捆綁看成一個整體,共有種,然后與“禮”、“數(shù)”進行排序,共有種,最后將“樂”與“書”插入4個空即可,共有種,再相乘得解【詳解】由題意“樂”與“書”不能相鄰,“射”和“御”要相鄰,可將“射”和“御”進行捆綁看成一個整體,共有種,然后與“禮”、“數(shù)”進行排序,共有種,最后將“樂”與“書”插入4個空即可,共有種,由于是分步進行,所以共有種,故選:D.【點睛】本題考查排列、組合及簡單計
13、數(shù)問題,根據(jù)問題選擇合適的方法是關(guān)鍵,此類問題常見的方法有元素優(yōu)先法、捆綁法、插空法等,本題屬于中等題.8、C【解析】取BD中點O,根據(jù)面面垂直性質(zhì)定理得平面,再根據(jù)線面垂直判定與性質(zhì)定理、面面垂直判定定理證得平面以及平面平面;利用錐體體積公式求三棱錐的體積,最后根據(jù)反證法說明不成立.【詳解】因為,所以為等腰直角三角形,因為,所以,從而為等腰直角三角形,取BD中點O,連接,如圖,因為二面角為直二面角,所以平面平面,因為為等腰直角三角形,所以平面平面,平面,因此平面,所以三棱錐的體積為,正確;因為平面,平面,所以,因為,,平面,所以平面;即正確;因為平面,平面;所以;由已知條件得,平面,因此平面
14、,因為平面,所以平面平面;即正確;如果,而由平面,平面,所以,因為,平面,所以平面;因為平面;即,與矛盾,所以不正確;故選:C【點睛】本題考查面面垂直性質(zhì)與判定定理、線面垂直判定與性質(zhì)定理以及錐體體積公式,考查基本分析論證與求解能力,屬中檔題.9、A【解析】由正視圖和側(cè)視圖得三棱錐的高,由俯視圖得三棱錐底面積,再利用棱錐的體積公式求解即可.【詳解】由三棱錐的正視圖和側(cè)視圖得三棱錐的高,由俯視圖得三棱錐底面積,所以該三棱錐的體積.故選:A【點睛】本題主要考查三視圖和棱錐的體積公式,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題.10、B【解析】證明與平面所成角為,再利用邊的關(guān)系得到正弦值.【詳解】如圖所示:
15、連接與交于點,連接,過點作 與平面所成角等于與平面所成角正方體平面 平面 與平面所成角為設(shè)正方體邊長為1在中故答案選B【點睛】本題考查了線面夾角,判斷與平面所成角為是解得的關(guān)鍵,意在考查學(xué)生的計算能力和空間想象能力.11、D【解析】分析:通過計算前幾項,可得n=3,4,2018,數(shù)列以3為周期的數(shù)列,計算可得所求和詳解:定義域為R的奇函數(shù)f(x),可得f(x)=f(x),當(dāng)x0時,滿足,可得x時,f(x)=f(x3),則f(1)=log25,f(2)=f(1)=f(1)=log25,f(3)=f(0)=0,f(4)=f(1)=log25,f(5)=f(2)=f(1)=f(1)=log25,f(
16、6)=f(3)=f(0)=0,f(7)=f(4)=f(1)=log25,f(8)=f(2)=f(1)=f(1)=log25,f(1)+f(2)+f(3)+f(2020)=log25+log25+(0log25+log25)672 =0,故選:D點睛:歸納推理的一般步驟: 一、通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì). 二、從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想). 常見的歸納推理分為數(shù)的歸納和形的歸納兩類:(1) 數(shù)的歸納包括數(shù)的歸納和式子的歸納,解決此類問題時,需要細心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時還要聯(lián)系相關(guān)的知識,如等差數(shù)列、等比數(shù)列等;(2) 形的歸納主要包括圖形數(shù)
17、目的歸納和圖形變化規(guī)律的歸納.12、A【解析】根據(jù)相關(guān)系數(shù)的概念即可作出判斷.【詳解】這組樣本數(shù)據(jù)的相關(guān)系數(shù)為,這一組數(shù)據(jù),線性相關(guān),且是負相關(guān), 可排除D,B,C,故選A【點睛】本題考查了相關(guān)系數(shù),考查了正相關(guān)和負相關(guān),考查了一組數(shù)據(jù)的完全相關(guān)性,是基礎(chǔ)的概念題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先計算得到,再計算,然后計算.【詳解】是夾角為的兩個單位向量 故答案為【點睛】本題考查了向量的計算和模,屬于向量的??碱}型,意在考查學(xué)生的計算能力.14、1【解析】選取為基底,把其它向量都用基底表示后計算【詳解】由題意故答案為1【點睛】本題考查空間向量的數(shù)量積,解題關(guān)鍵是選
18、取基底,把向量用基底表示后再進行計算15、4【解析】此題考查線性規(guī)劃問題,只需認真作出不等式表示的平面區(qū)域,把目標(biāo)函數(shù)轉(zhuǎn)化為截距式求值即可.【詳解】作出不等式表示的平面區(qū)域,如圖所示:令,則,作出直線l: ,平移直線l,由圖可得,當(dāng)直線經(jīng)過點B時,直線在y軸上的截距最大,此時取得最小值,得B(2,2),代入故填4.【點睛】本題主要考查學(xué)生的作圖能力及分析能力,難度較小.16、.【解析】根據(jù)和的圖象,可得當(dāng)且僅當(dāng)有四解時,符合題意令,此時,根據(jù)判別式可列出關(guān)于的不等式,進而可求的取值范圍.【詳解】解:,可得在遞增,在遞減,則的圖象如下:當(dāng)時,圖象如圖,此時無解,不符合題意當(dāng)時,圖象如圖,此時無解
19、,不符合題意當(dāng)時,函數(shù)的圖象如下:令,當(dāng)時,方程只有一解,當(dāng)且僅當(dāng)有四解時,符合題意此時四解,則,解得.綜上,實數(shù)的取值范圍是.故答案為: .【點睛】本題考查了復(fù)合函數(shù)的零點問題,考查了數(shù)形結(jié)合的思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)51;(2)805;(3)見解析【解析】試題分析:(1)根據(jù)中位數(shù)定義列式解得中位數(shù),(2)由正態(tài)分布得旅游費用支出在元以上的概率為,再根據(jù)頻數(shù)等于總數(shù)與頻率乘積得人數(shù).(3)先確定隨機變量取法,再利用組合數(shù)分別求對應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.試題解析:(1)設(shè)樣本的中位數(shù)為,則,解得,所得樣本中位
20、數(shù)為(百元). (2), 旅游費用支出在元以上的概率為 ,估計有位同學(xué)旅游費用支出在元以上. (3)的可能取值為, , , ,的分布列為. 18、(1)沒有(2)的分布列見解析, 【解析】試題分析:(1)由題意完成列聯(lián)表,然后計算可得,則沒有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異(2) X可能取值為90,45,30,-15,據(jù)此依據(jù)概率求得分布列,結(jié)合分布列可求得數(shù)學(xué)期望.試題解析:(1)列聯(lián)表如下:甲產(chǎn)品乙產(chǎn)品合計合格品8075155次品202545合計100100200沒有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異(2)依題意,生產(chǎn)一件甲,乙產(chǎn)品為合格品的概率分別為,隨機變量可能取值為90,45,
21、30,-15,904530-15的分布列為:19、(1);(2)見詳解.【解析】(1)將函數(shù)表示為分段函數(shù),再求其最小值.(2)利用已知等式構(gòu)造出可以利用均值不等式的形式.【詳解】(1)當(dāng)時,取得最小值,即.(2)證明:依題意,則.所以,當(dāng)且僅當(dāng),即,時,等號成立.所以.【點睛】本題考查求含絕對值函數(shù)的最值,由均值不等式求最值.含絕對值的函數(shù)或不等式問題,一般可以利用零點分類討論法求解.已知或(是正常數(shù),)的值,求另一個的最值,這是一種常見的題型,解題方法是把兩式相乘展開再利用基本不等式求最值.20、 (1) .(2) 直線的斜率為除以外的任意實數(shù).【解析】分析:(1)由離心率條件得,然后將點
22、.代入原式得到第二個方程,聯(lián)立求解即可;(2)先得出OP的方程,然后根據(jù)點差法研究即可;先表示出,然后聯(lián)立直線和橢圓根據(jù)韋達定理代入等式求解即可.詳解:(1)由可得, 設(shè)橢圓方程為,代入點,得,故橢圓方程為:. (2)由條件知,設(shè),則滿足,兩式作差得:, 化簡得,因為被平分,故,當(dāng)即直線不過原點時,所以; 當(dāng)即直線過原點時,為任意實數(shù),但時與重合;綜上即直線的斜率為除以外的任意實數(shù). 當(dāng)時,故 ,得,聯(lián)立,得,舍去; 當(dāng)時,設(shè)直線為,代入橢圓方程可得,()所以, , 故 解得,此時方程()中,故所求直線方程為. 點睛:考查橢圓的標(biāo)準(zhǔn)方程,直線和橢圓的位置關(guān)系,期中點差法的應(yīng)用是必須要熟悉掌握的
23、,當(dāng)出現(xiàn)弦的中點問題時通常都會想到的點差法的應(yīng)用同時對計算的準(zhǔn)確性也提出了較高要求,屬于較難題型.21、(1)28533125(2)15,代辦點不應(yīng)將前臺工作人員裁員1【解析】(1)由題意得到樣本中包裹件數(shù)在101300之間的概率為35,進而得到包裹件數(shù)在101300之間的天數(shù)服從二項分布X(2)利用平均數(shù)的計算公式,求得樣本中每件快遞收取的費用的平均值,即可得到結(jié)論;根據(jù)題意及,分別計算出不裁員和裁員,代辦點平均每日利潤的期望值,比較即可得到結(jié)論.【詳解】(1)由題意,可得樣本中包裹件數(shù)在101300之間的天數(shù)為36,頻率f=36故可估計概率為35,顯然未來5天中,包裹件數(shù)在101300之間
24、的天數(shù)服從二項分布,即X故所求概率為1-P(2)樣本中快遞費用及包裹件數(shù)如下表:包裹重量(單位:kg)12345快遞費(單位:元)1015202530包裹件數(shù)43301584故樣本中每件快遞收取的費用的平均值為1043+1530+2015+258+304100故估計該代辦點對每件快遞收取的費用的平均值為15元. 代辦點不應(yīng)將前臺工作人員裁員1人,理由如下:根據(jù)題意及(2),攪件數(shù)每增加1,代辦點快遞收入增加15(元),若不裁員,則每天可攬件的上限為450件,代辦點每日攬件數(shù)情況如下:包裹件數(shù)范圍0100101200201300301400401500包裹件數(shù)(近似處理)50150250350450實際攬件數(shù)50150250350450頻率0.10.10.50.20.1EY500.1+15
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度企業(yè)培訓(xùn)師資引進合同
- 二零二五年度土地開發(fā)權(quán)轉(zhuǎn)讓居間代理合同模板
- 二零二五年度出差安全防護設(shè)備及服務(wù)租賃合同4篇
- 2025業(yè)績目標(biāo)達成股權(quán)激勵與員工股權(quán)激勵績效合同3篇
- 二零二五年度企業(yè)培訓(xùn)項目監(jiān)督合同
- 二零二五年度天然氣交易平臺服務(wù)合同
- 二零二五年度兩居房車租賃與民宿合作合同樣本2篇
- 2025年度水路聯(lián)合運輸貨運代理服務(wù)合同范本
- 二零二五版文化產(chǎn)業(yè)發(fā)展擔(dān)保合同示范文本4篇
- 2025年度個人房產(chǎn)抵押貸款擔(dān)保合同違約責(zé)任4篇
- 2025年度杭州市固廢處理與資源化利用合同3篇
- 部編版二年級下冊《道德與法治》教案及反思(更新)
- 充電樁項目運營方案
- 退休人員出國探親申請書
- 傷殘撫恤管理辦法實施細則
- 高中物理競賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- 西方經(jīng)濟學(xué)-高鴻業(yè)-筆記
- 幼兒園美術(shù)教育研究策略國內(nèi)外
- 2024屆河南省五市高三第一次聯(lián)考英語試題及答案
- 【永輝超市公司員工招聘問題及優(yōu)化(12000字論文)】
- 孕婦學(xué)校品管圈課件
評論
0/150
提交評論