




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、優(yōu)選文檔優(yōu)選文檔PAGEPAGE45優(yōu)選文檔PAGENovelGrapheneUHMWPENanocompositesPreparedbyPolymerizationFillingUsingSingle-SiteCatalystsSupportedonFunctionalizedGrapheneNanosheetDispersions?rzel,*FabianKempe,YiThomann,StefanMark,MarkusEnders,*,?,?FreiburgMaterialsResearchCenter(FMF)andInstituteforMacromolecularChemistry
2、,UniversityofFreiburg,Stefan-Meier-Str.?31,D-79098Freiburg,GermanyAnorganisch-ChemischesInstitut,UniversityofHeidelberg,ImNeuenheimerFeld270,D-69120Heidelberg,GermanyABSTRACT:Novelfamiliesofultrahigh-molecular-weightpolyethy-lene(UHMWPE)nanocomposites,containinguniformlydispersed,functionalizedgraph
3、ene(FG)nanosheets,werepreparedbymeansofthepolymerization?llingtechnique(PFT).Unparalleledbyanyothercarbonandboehmitenanocomposites,FG/UHMWPEexhibitedanunusualsimultaneousimprovementinstffness,elongationatbreak,andeffectivenucleationofpolyethylenecrystallizationatonly1wt%FGcontent.FGnanosheetsareultr
4、athinwithathicknessofonlyonecarbonatomandlateraldimensionsofseveralmicrometers.OwingtothepresenceofsurfacehydroxylgroupsontheFG,singleFG/methylaluminoxane(MAO)nanosheetscanbeeffectivelydispersedinn-heptane,thusenablingimmobilizationofanMAO-activatedchromium(Cr1)single-sitecatalystonFG.Incontrasttona
5、nometer-scalecarbonblack(CB),multiwallcarbonnanotubes(CNT),graphite,andnanoboehmite,whichfailedtoformstabledispersions,FG/MAO/Cr1affordedthehighestcatalystactivitiesandexcellentmorphologicalcontrol.Inymeizi?ig,eiegiiceieiieymeiziceeimieeeepecialsafetyandhandlingprecautionstypicallyrequiredbyconventi
6、onalcompoundingofnanoparticleswithultralowbulkdensities.INTRODUCTIONUltrahigh-molecular-weightpolyethylene(UHMWPE),withmolarweightsexceeding1million,iswell-knownforitsultrahightoughnesscombinedwithhighabrasionresistance,verylowfrictioncoeffcient,lowmoistureuptake,andexcellentchemicalstability1.ee,?b
7、eecemUHMWPE.Applicationsrangefromwear-resistanttransportbeltsandsupertoughengineeringplasticstobiomaterials,implantsforuseinhip,knee,andspinereplacements,ultrastrengthgel-spunUHMWPEfabricsforwater-repellantropes,cut-resistantgloves,andbullet-proofbodyarm2For.manyapplicationsitishighlydesirabletoimpr
8、ovetheUHMWPEcrystallizationrate,toughness/stiffnessbalance,andespeciallytheelectricalaswellasthermalconductivitybecauseUHMWPEisathermalandelectricalinsulator.Providedthateffectivedispersionisachieved,anisotropicicecigi?cyimveye?em-ance3.UHMWPEnano-andmicrocompositeswithcarbonblack,graphite,4andmulti
9、wallcarbonnanotubes(MWCNT),5processedbymeansofcompressionmolding,havebeendevelopedtoimproveelectricalconductivity.Itshouldbenotedthatdrypowderblendingwithnanoparticlesrequiresspecialsafetyprecautionsandhandlingprocedurestopreventemissions,dustexplosions,andhealthhazardsresultingfromnanoparticleinhal
10、ationoradsorption.Arecentadvanceintroducedelectrostaticsprayingofgraphenenanoplatelet(GNP)suspensiwivegeice6-8meci?ccee120-150m2/g.SuchGNPstackscontainingmorethan60graphenenanosheetsproduce6878UHWPE/GNPcmie?mexibib-tiallyimprovedfracturetoughnessandtensilestrengthataverylowGNPcontentofonly0.1wt%.6In
11、conventionalapproachestowardUHMWPEnanocomposites,graphiteoxide(GO)andchemicallyreducedGOweredispersedindiluentssuchasethanolandthenspray-coatedontoUHMWPEpowderpriortocompressionmolding.7Foroptimizingthematerialpropertiesitisofgreatinteresttoimplementnano?llerdispersiondirectlyintoethylenepolymer-izi
12、bee?mewviciyeiqipolymerizationmedia,thuspreventingemissionofnano-particlesatthesametime.Catalyticpolymerizationintheeece?e(-situpolymeriz“ii”)ieexeiveycecveiemicye?cmwiveyig?ece.Iymeizi-?llingprocesses,e?eeecyebemixgwiecyme?ece.Progressinthepolymer-ization-?igeciqe(PFT)ye?beereviewedbyDuboisandKamin
13、sky.8-10Single-sitecatalysttechnologyoffeexciigewiieiige?polymerization11andPFTprocessesbydesigningbothmecye?cieceye?icemorphologies.PFTaffye?cmiewiigi?cyimveCNTieieecicc-ductivity,thusenablingeffectiveelectromagneticshieldingofReceived:July4,2012Revised:August13,2012Published:August30,2012?2012Amer
14、icanChemicalSocietyx.i.g/10.1021/m301376q|cmece2012,45,6878-6887在功能化石墨烯納米片分別體上采用可支持的單中心催化劑經(jīng)過聚合填充制備新式石墨烯超高分子量聚乙烯納米復(fù)合資料大綱:制備含有平均分散功能化石墨烯(FG)納米片的新式石墨烯超高分子量聚乙烯納米復(fù)合資料,準(zhǔn)備借聚合填充技術(shù)(PFT)。與其他碳和水軟鋁石納米復(fù)合資料對照,F(xiàn)G/UHMWPE在剛性上表現(xiàn)出不平時(shí)的同步提高,斷裂伸長率,聚乙烯結(jié)晶僅為1(重量)。FG納米片是極薄的,厚度只有一個(gè)碳原子和幾個(gè)微米的橫向尺寸。由于表面羥基上的FG存在下,單FG/甲基鋁氧烷(MAO)的納米
15、片能夠有效地分別在正庚烷,從而使一個(gè)被MAO活化的鉻(CR1)上的FG單活性中心催化劑固定化。而對照之下,納米級炭黑(CB),多壁碳納米管(CNT),石墨和納米勃姆石,難以形成牢固的分別體,F(xiàn)G/MAO/Cr1供給最高的催化劑活性和優(yōu)異的形態(tài)控制。在聚合填充物,納米顆粒分別體的交融到聚合過程除掉了平時(shí)需要由納米粒子擁有超低容積密度的混雜安全和辦理措施。序言超高分子量聚乙烯(UHMWPE),摩爾質(zhì)量高出100萬,它最主要的特點(diǎn)是擁有超高韌性結(jié)合高耐磨性,特別低的摩擦系數(shù),低吸濕性和優(yōu)異的化學(xué)牢固性。床單,部件和纖維都是有超高分子量聚乙烯生產(chǎn)的。應(yīng)用范圍從耐磨輸送皮帶和增強(qiáng)工程塑料生物質(zhì)料,植入的
16、髖,膝,脊柱和代替使用,高強(qiáng)度凝膠紡絲UHMWPE織物用來做做防水繩索,防割手套,防彈車身、防彈衣.關(guān)于好多應(yīng)用,特別希望改進(jìn)超高分子量聚乙烯的結(jié)晶速率,韌性/剛性平衡,特別是電和熱傳導(dǎo)性,由于超高分子量聚乙烯是熱和電的絕緣體。前提是實(shí)現(xiàn)有效的分散,各向異性納米顆粒可顯然改進(jìn)聚烯烴的性能。UHMWPE納米和與碳黑微觀復(fù)合,石墨,和多壁碳納米管(MWCNT),經(jīng)過壓縮成型裝置進(jìn)行了辦理,獲得了開發(fā),以提高導(dǎo)電性。應(yīng)該指出的該干粉混雜納米粒子的安全預(yù)防措施和辦理程序,以防范排放,粉塵爆炸,吸入或吸取納米粒子而產(chǎn)生健康危害。近來的進(jìn)展,石墨烯納米薄片的推出6-8納米的平均厚度和120-150平方米/
17、克的比表面積的靜電噴涂(石墨烯納米薄片)懸浮液。這樣的石墨烯納米薄片含有高出60石墨烯納米片生產(chǎn)超高分子量聚乙烯/石墨烯納米薄片納米復(fù)合膜表現(xiàn)出顯然改進(jìn)的斷裂韌性和抗張強(qiáng)度含量僅為0.1(重量).傳統(tǒng)生產(chǎn)超高分子量聚乙烯復(fù)合資料,是將石墨氧化物(GO)和化學(xué)還原的石墨氧化物分別在稀釋劑如乙醇,爾后在模壓前噴涂到超高分子量聚乙烯粉末。為了優(yōu)化資料的性能,希望實(shí)現(xiàn)納米填料的分別并直接進(jìn)入乙烯聚合,液體的低粘度有利于聚合介質(zhì),從而防范納米粒子的發(fā)射在同一時(shí)間。在催化聚合填料(“原位聚合”)的存在下,以生產(chǎn)傳統(tǒng)的熱塑性聚烯烴化合物被廣泛地使用,擁有特別高的填料含量。在聚合填充工藝,該填料被用作催化劑載
18、體,以使基質(zhì)直接從納米填料表面生長。在聚合進(jìn)行中填充技術(shù)(PFT)聚烯烴向出處Dubois和Kaminsky改進(jìn).單活性中心催化劑審查技術(shù)供給剪裁烯烴激動(dòng)人心的新時(shí)機(jī)聚合11和PFT流程經(jīng)過設(shè)計(jì)兩個(gè)聚烯烴分子結(jié)構(gòu)和聚烯烴粒子形態(tài)。PFT能供給聚烯烴納米復(fù)合資料顯然改進(jìn)CNT的分別性和導(dǎo)電性,從而使老例聚烯烴產(chǎn)生有效電磁障蔽但是,相當(dāng)少的已知與關(guān)于PFT生產(chǎn)超高分子量聚乙烯復(fù)合資料。近來,Rastogi醫(yī)師等。報(bào)告了超高分子量聚乙烯的形成使用水楊醛制備的納米復(fù)合資料PFT支持TiO2,ZrO2和碳納米管的催化劑。由此納米復(fù)合資料表現(xiàn)出改進(jìn)的納米填料的分別性和Macromoleculescveiy
19、e?.12Yet,considerablylessisknownwithrespecttoPFT-producingUHMWPEnanocomposites.Re-cently,Rastogietal.reportedontheformationofUHMWPEnanocompositespreparedbyPFTusingsalicylaldiminecatalystssupportedonTiO,ZrO,andCNT.Theresulting22cmieexibieimve?eieiandhigherentanglementmolarmasses.13,14Inourresearch,we
20、investigatedPFTwithFGnanosheetsas?ecy.Geeecbeewithathicknessofonecarbonatom.Thissinglelayer2-ofsphybridizedcarbonatomsisarrangedinahoneycomb-likelattice.Withanatomicdiameterof0.14nmandasheetwidthofseveralmicrometers,theaspectratiooftypicalgraphenesislargerthan10000.Theyexhibitexceptionalproperties,i
21、ncludingultrahighstrength,ultrafastelectrontransportatroomtemperature,extraordinarilyhighstiffness,andabrasionresistanceaswellasstrongUVandIRabsorption15Inaddition.tothehighlyperfectidealgraphenes,avarietyofhydroxyl-functionalizedgraphenesareavailable16-19The.preparationofFGwaspioneeredbyBoehmandco-
22、workersin196921byiggiexie(GO),wicw?yeizebyBrodieatOxfordUniversityover160yearsago22Thermal.orchemicalreductionofGOprovidesFGnanosheets23,24.Theoxygencontentofthislayeredcompoundiscontrolledbythetemperatureofthereductionprocessanddecreaseswithincreasingreductiontemperature.Thepredominantoxygenfunctio
23、nalityattemperaturesabove400Ccorrespondstohydroxylgroups,whereasepoxy,carbonyl,andcarboxylgroupsundergorapidthermolysisatsuchtemperatures.ThesurfaceareaofFGisgenerallyintherangeof-600120m2/g.Thisisconsiderablysmallerthanthatofidealgraphenes(2630/mg).25,26Uponshearingthemicrometer-sized,accordion-lik
24、eparticlemorphologyofFGbymeansofsonication,thelargeFGparticlescompletelydisintegratetoaffordsingleFGee.Tiie?ecebymiveiceeieeci?cceem6001800m2/g.27SinceFGwithahighsurfaceareahasanultralowbulkdensity,PFTisthececicecigye?/FGmebcethatcanbeaddedtocoveiye?mice.AccordingtoYanetal.,theadditionof1wt%FGpriort
25、ocmeimigigi?cyimveeweei-ance28.SimultaneouslywiththeimprovedwearresistancethebiocompatibilityofUHMWPEisnotaffected.29SeveralgroupshaveusedgraphiteandFGinPFT.However,mostcatalystsfailedtoproduceUHMWPE.Pretreatmentofe?ewiccymeymixe(AO)iethemostcommonlyusedapproachesforeffectiveimmobiliza-tionofmetallo
26、ceneandpostmetallocenecatalysts11,30.-35Duboissuccessfullyemployedmicrometerizeg-ie?einaPFTprocesstoproducethermoplasticPE/graphitecompositeswithaneffecive?eiei.36FGnano-compositeswithlow-molecular-weightthermoplasticHDPE,37,38LDPE,39LLDPE,40iPP,41andotherpolymerssuchaspolyanilinehavebeenreported42-
27、46To.thebestofourknowledge,therearenoreportsonPFTprocessesforproducingUHMWPE/FGnanocompositesusingFGnano-sheetsasthecatalystsupport.Herewereportonsingle-sitechromium(III)constrained-gemeycyimmbiizeemi?e-freeMAO-impregnatedFGnanosheetdispersionsinn-heptane.ThisnovelcatalystgenerationisemployedinPFTto
28、producenewUHMWPE/FGnanocompositefamilies.FGiscomparedwithothernanoparticlessuchasMWCNT,nanometer-scale6879Articleboehmites,carbonblack,andconventionalgraphite.Thei?ececyeicyactivityandthethermal,mechanical,andelectricalpropertiesofUHMWPEnanocompositesareinvestigated.EXPERIMENTALSECTIONMaterialsandGe
29、neralConsiderations.Allreactionsinvolvingair-andmoisture-sensitivecompoundswerecarriedoutunderadryargonatmosphereusingstandardSchlenktechniquesandaglovebox.Toluene(anhydrous),n-heptane(anhydrous),andtriisobutylalumi-num(TiBAl,1Minhexane)werepurchasedfromSigma-Aldrich.Teeeeweeei?eigVcm-3,4,5-AmeeC.ve
30、i?e.Tecy,ic5trimethyl-1-(8-quinolyl)-2-trimethylsilyl-cyclopentadienylchromium-(Cr1),wassynthesizedinthegroupofM.EndersbyDr.S.Mark,UniversityofHeidelberg,followingprocedurespreviouslyreported.47MAO,purchasedfromCrompton,hadanAlcontentof10wt%intolueneandwasstoredunderadryargonatmosphereinaglovebox(MB
31、raunMB150B-G-II).Ethylene(3.0)wassuppliedbyAirLiquideandwasusedwithoutei?ci.Thefollowingcommercial,carbon-basedcatalystsupportswereused:CNT(BaytubesC150P,BayerAG),carbonblack(PrintexXE2B,EvonikIndustries),graphite(KF99.5,mhlAG),andboehmite(Disperal40,kindlysuppliedbySasolGermany).Mesoporousiic,NF20,
32、wyeizebymi?emeofStuckyetal.48,49FGwyeizemgieigmi?eHummersmethodtoobtainGO,whichwasthermallyreducedbyrapidheating(750C)underanN2atmospheretoproduceFGnanosheets51.Thepropertiesofthenanoparticlesemployedinymeizi?igemmizeiTbe1.Table1.MaterialsUsedasCatalystSupportseci?cceeamaterial(m2/g)elementalanalysi
33、sb(%)FG60080.0(C),1.2(H),18.8(O)carbonblack104097.0(C)graphite3099.99(C)boehmite200n.d.cmultiwallcarbon25097.0(C)nanotubesnanofoamNF201200n.d.cabDeterminedusingBETN2absorption.D.d.=notdetermined.CatalystPreparationandEthylenePolymerization.Thecatalystwaspreparedbyheatingthesupportfor2hinvacuoat110C.
34、Itwasthendispersedinn-heptane(10mg/mL)andsonicatedfor40min.Thecocatalystintoluene(10wt%)wasadded,andthemixturewassonicatedfor20min.CatalystCr1intoluene(0.1mg/mL)wasaddedwithasyringe,andthemixturewasstirredfor20min.Thethus-activatedcatalystwastransferredintothereactor,andthepolymerizationwasstarted.W
35、heninorganicsupportswereused,thetemperaturewasmaintainedat160Cfor16hinvacuo.Furthermore,afteradditionofMAO,theactivatedsupportwaswashedwithfreshheptanetoremoveexcessMAO.Ethylenepolymerizationswerecarriedoutina200mLdouble-jacketsteelreactorequippedwithamechanicalstirrerandconnectedtoathermostat.Tothe
36、reactorwereaddeddryn-heptane(80mL)andtriisobutylaluminum(TiBAl;0.5mL1Minhexane)asascavenger.Duringthepolymerizationperiod,theethylenepressurewaskeptconstantat5bar,thetemperatureat40C,andthestirringspeedat1000rpm.Polymerizationwasstoppedbyijecigcii?eme.Teymew?eeffanddriedfor16hat65Cunderreducedpressu
37、retoconstantweight.Polymerizationsforonlinekineticsmeasurementswerecarriedouti600mcieecveeqiewimecicstirrerandasoftwareinterface.Thereactor,previouslychargedwithn-x.i.g/10.1021/m301376q|cmece2012,45,6878-6887較高的摩爾圍繞包塊。在我們的研究中,我們檢查的PFT與FG納米片作為納米填料和催化劑載體。石墨烯是擁有1個(gè)碳原子厚度的碳片。SP2-這個(gè)單層雜化的碳原子排列在一個(gè)蜂窩狀格。是0.14納
38、米的原子直徑和幾個(gè)微米寬度的片材,典型的石墨烯的長寬比大于10000。他們表現(xiàn)出優(yōu)異的性能,包括超高強(qiáng)度,在室溫下傳達(dá)超高速電子,特別高的剛性,耐磨性和性以及強(qiáng)烈的紫外線和紅外線吸取.其他到高度圓滿的理想石墨烯,多種羥基官能石墨烯是可用的。16-19FG的制備是由貝姆和同事在1969年利用氧化石墨(GO)首創(chuàng)的,這是160多年前首次由布羅迪在牛津大學(xué)合成的.22熱或GO的化學(xué)還原供給FG納米薄片.23,24這種層狀化合物中的氧含量在還原過程中的溫度被控制,并減緩提高還原溫度。主要的氧在溫度高于400的功能對應(yīng)于羥基基團(tuán),而環(huán)氧基,羰基和羧基基團(tuán)進(jìn)行在這樣的溫度下快速熱解。FG的比表面積一般在6
39、00-1200平方米/克的范圍內(nèi)。這是較理想的石墨烯(2630平方米/小得多G).25,26剪切后的微米級,手風(fēng)琴狀FG的顆粒形態(tài)借助于超聲辦理,大功能化石墨烯顆粒完好崩潰供給單FG納米片。這是經(jīng)過大量增加的反射比表面積為600?1800左右m2/g.27由于FG擁有高表面積超低體積密度,PFT是用于生產(chǎn)聚烯烴/FG母粒能夠被增加到老例聚烯烴基質(zhì)。據(jù)Yanetal.,以前除了1(重量)的FG壓縮成形顯然提高了耐磨損性。28同時(shí)擁有改進(jìn)的耐磨損性的超高分子量聚乙烯的生物相容性不受影響.29一些研究小組已經(jīng)在聚合填充中使用石墨和FG。但是,與助催化劑甲基鋁氧烷(MAO)的填料是一最常用的方法為有效
40、的固定化金屬茂和過氧化茂催化劑.11,30-35的杜波依斯成功地采用微米級石墨填料在PFT工藝生產(chǎn)熱塑性聚乙烯/石墨復(fù)合資料的分別體。36FG納米復(fù)合資料與低分子量熱塑性高密度聚乙烯,低密度聚乙烯37,38,39線性低密度聚乙烯,聚丙烯40,41和其他聚合物如聚苯胺已被報(bào)道.42-46要盡我們的知識,還沒有對聚合填充報(bào)告,使用FG納米片生產(chǎn)超高分子量聚乙烯/FG納米復(fù)合資料作為催化劑載體。在這里,我們對單中心鉻(III)拘束幾何催化劑固定化在無乳化劑的MAO浸漬的FG納米片的分別體中的正庚烷進(jìn)行報(bào)告。這種新式催化劑的產(chǎn)生是受益于PFT產(chǎn)生新的超高分子量聚乙烯/FG納米復(fù)合資料。FG與比較其他納
41、米粒子比較,如MWCNT,納米尺度的勃姆石,炭黑,和傳統(tǒng)的石墨。對該催化劑的活性和超高分子量聚乙烯的熱,機(jī)械和電氣性能納米復(fù)合資料進(jìn)行了研究。實(shí)驗(yàn)部分資料與一般注意事項(xiàng)。所有涉及的反響空氣和濕氣敏感的化合物,分別使用標(biāo)準(zhǔn)Schlenk技術(shù)和氬氣氛手套箱進(jìn)行干燥。甲苯(無水),正庚烷(無水的),和三異丁基鋁(TIBAL,1M的己烷溶液)購自Sigma-Aldrich公司購買。甲苯和庚烷使用真空進(jìn)一步純化大氣有限公司溶劑凈化器。催化劑,二氯-3,4,5-三甲基-1-(8-喹啉基)-2-三甲基硅烷基-環(huán)戊二烯基鉻(三)(CR1),由恩澤斯博士S.馬克在海德堡大學(xué)合成,下面的程序前面報(bào)道過.MAO,購
42、自Crompton,Al含量為10重量的甲苯、在干燥的氬氣氛下,儲藏在一個(gè)手套箱(布勞恩MB150B-G-II)。乙烯(3.0)是由法國液化空氣供給并且在使用時(shí)無需進(jìn)一步純化。以下商業(yè),碳系催化劑載體是使用:CNT(的BaytubesC150P,拜耳公司),炭黑(的PrintexXE2B,贏創(chuàng)工業(yè)公司),石墨(KFL99.5,)和薄水鋁石(40的Disperal,由Sasol德國友情供給)。介孔二氧化硅,NF20,是由改進(jìn)方法斯塔基等合成的al.48,使用改進(jìn)的過程,F(xiàn)G是由經(jīng)過改進(jìn)法從石墨氧化物獲得的炭黑合成的,這是由熱減少快速加熱(750)在N2氣氛下,以產(chǎn)生FG中使用的納米顆粒的納米薄片
43、聚合填充的屬性匯總于表1中。MacromoleculesheptaneandTiBAl,wassaturatedthreetimeswithethyleneCat40beforepolymerizationwasstartedbyadditionofthecatalyst.PolymerCharacterization.ThewMandMWDofthepolymersweredeterminedusingaPL-220chromatograph(PolymerLabo-ratories)equippedwithadifferentialrefractiveindex(DRI)detector,
44、adifferentialviscometer210R(Viscotek),andalow-anglelight-scattering(LASS)detector.Polyeyeewe?eUHWPEwhenitsMwexceeded106g/mol.Themeasurementswereperformedat150CwiththreePLGelOlexiscolumns,and1,2,4-trichlorobenzene(Merck)stabilizedwith0.2wt%2,6-di-tert-butyl-(4-methylphenol)(Aldrich)wasusedasve?we1.0m
45、L/min.Columnswerecalibratedusing12polystyrenesampleswithanarrowMWD.MeltingpointsandtheoverallthermalbehavioroftheneatpolymerweredeterminedbydifferentialscanningcalorimetryusingaDSC6200fromSeikoInstruments.Thepolymerwasheatedfromroomtemperatureto200C,keptatthistemperaturefor5min,ce-70C,eeegi200C.Tewa
46、skeptconstantat10K/min.TEMmicroscopywasperformedwithaLEOEM912OmegadeviceandSEMmicroscopywithaQuanta250FEG.ParticlesizesweremeasuredusingaCamsizerfromRetschTechnologies.Theresistanceofallnanocompositeswasmeasuredwithafour-pointprobe.Acorrectionfactorthatdependsonthesamplegeometrywastakenintoaccountin
47、thecalculations50The.tensilemodulusofthenanocompositeswasmeasuredwithaZwickmodelZ005(DINENISO527).PolymerProcessing.TheobtainedUHMWPE/FGnanocompo-sitesampleswerecompression-moldedinaCollin200Pmeltpress(Dr.CollinGmbH,Germany).Thetensilespecimenswerestampedoutof100702mmpolymerplates.Thecompression-mol
48、dingparametersarelistedinTable2.Table2.ConditionsforProcessingUHMWPENanocompositesstages12345temp(C)21021021021025press.(bar)1530405060ArticlereactwithMAO,thusbondingandcoatingMAOontotheFGsurface.ThisoxygenfunctionalityisessentialforproducingstableFGdispersionswithoutrequiringadditionofemulsi-?ers.5
49、4-58TheresultingFG/MAOwasusedtosupportCr1.Thesamecatalystpreparationprocedurewasappliedtoother(nano)particles(cf.Table1),suchasmultiwallCNT,conductiveCBwithanaveragesizeof20nm,andaluminumoxidehydroxide(boehmite)withaverageprimaryparticlesizeof40nmaswellasaconventionalmicrometer-sizedgraphite?e(80m)(
50、c.Tbe1).IcFG,ecbmaterialsfailedtoproducestabledispersionsinn-heptane.BothCNTandgraphitecontainfewfunctionalgroupsandareunabletoeffectivelybondMAOandCr1,whichonlylooselyadheretothecarbonsupport.Incontrast,CBhasabee-hive-likemorphology59resemblingthestructureofporouseigegraphiteandisabletoadsorbMAOand
51、Cr1initspores.Nanometer-scaleboehmitewasemployedforcomparison.Inpreviousexperiments,boehmitenanoparticleswereusedsuccessfullyinbothPFT60andmeltextrusion61toproducethermoplasticHDPEnanocompositesandiPPnanocompositeswitheffectiveboehmitedispersionandimprovedstiffness.ThemesoporoussilicateNF20(averagep
52、orediameter20nm)wassynthesizedaccordingtomethodsproposedbyStuckyetal.46,61andbyproceduresreportedearlierforHDPEformation.59Ethylenewaspolymerizedinn-heptaneat40Cand5barethylenepressureforbetween22and72mininastirredcvececmiewie?e?econtents.AtaconstantAl/Crmolarratioof1400,theFGcontentinUHMWPEwasvarie
53、d(0.5,1,2.5,5,and10wt%).TheresultsoftheethylenepolymerizationsaresummarizedinTable3.Theonlinekineticsofthepolymerizations(cf.Table3.PolymerizationFillingandVariationoftheFillerContenttime(min)103010530RESULTSANDDISCUSSIONCatalystPreparationandPolymerizationFilling.Thesyntheticstrategyforimmobilizati
54、onofsingle-sitechromium-(III)cyFGiwiceme1.Ie?e,FGScheme1.SyntheticRoutetoaSingle-SiteChromiumCatalyst(Cr1)SupportedonFGentry?llerFGFGFGFGFGCBCNT8dboehmite9graphite10e,fNF20tpolactivitybMwcwt%a(min)(g/(mmolh)(g/mol)PDc0.543200002.01063.3147181001.81063.62.534254002.11063.6522402002.21063.61028276002.
55、41063.7547185012.81064.0550176001064.8572117001063.9560143001065.351170001064.6aWt%of?llerintheproduct.bTime-averagedactivity.cDeterminedbyHT-GPC.dWashingprocessbetweencatalystadditionandadditiontothepolymerizationvesselwasincluded.eWashingprocessbetweencatalystadditionandadditiontothepolymerization
56、vesselwasincluded.fForthepolymerizationwithNF20anamountof50mgofsupportwasusedtoimmobilizethecatalyst.Polymerizationcondition:C1=2.3m/;A:C=1400:1;=5bar;mpol=10g;V=300mL;TiBAl=1mL,40ethylene2mGOccigHmmeheptaneC,n-heptane.(600m/g)weemethodandwassubsequentlythermallyreducedbyvery51rapidheatingto750C,fol
57、lowingproceduresreportedbyFigure1)implythatFGreachesthehighestactivitiesasAksayandco-workers.TheresultingFGhadanoxygencomparedtomesoporoussilica,whereasothercarbon-based52,53contentof18.8wt%andacarboncontentof80.0wt%.Inthe?llers,exceptCB,wigi?cwecyciviie.secondstep,theFGwasdispersedinn-heptanebymean
58、sofI?eceNiceA/C1eAciviysonicationpriortoaddingMAOanddichloro-3,4,5-andMolecularWeight.UHMWPEnanocompositeswere5trimethyl-1-(8-quinolyl)-2-trimethylsilylcyclopentadienyl-obtainedbypolymerizingethyleneat5barand40Cinn-chromium(III)(Cr1).ThefunctionalgroupsofFG(1.5mmolheptaneatdifferentAl/Cr1ratiosinthe
59、presenceofvariousOH/g)predominantlyconsistedofhydroxylgroups,which6880?llers.WhereashomogeneousCr1/MAOintoluenefailedtox.i.g/10.1021/m301376q|cmece2012,45,6878-688表1.資料用作催化劑載體資料比表面積AREAA(平方米/克)元素analysisb()FG60080.0(C)1.2(H),18.8(O)炭黑104097.0(C)石墨3099.99(C)勃姆石200未檢測出多壁碳碳納米管25097.0(C)納米泡沫NF201200未檢測出
60、確定采用BETN2吸附。經(jīng)過元素確定解析。未檢測出=未測定催化劑的制備及乙烯聚合。該制備催化劑,經(jīng)過在110C的真空中在加熱2小時(shí)制備。爾后將其分別在正庚烷(10毫克/毫升)中,超聲辦理40分鐘內(nèi)。加入甲苯(10重量)助催化劑,且將混雜物超聲辦理20分鐘。催化劑的Cr1在甲苯(0.1毫克/mL)溶液用注射器加入,并且將混雜物攪拌20分鐘。由此活化的催化劑轉(zhuǎn)移到反響器中,并且開始聚合。當(dāng)使用了無機(jī)載體,溫度保持在160下在真空中16小時(shí)。其他,其他乙烯聚合物在一個(gè)200毫升的雙夾套鋼反響器中配有進(jìn)行機(jī)械攪拌器并連接到一個(gè)恒溫器。向反響器中分別加入無水正庚烷(80mL)和三異丁基鋁(TIBAL;0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五金店新零售模式探索與實(shí)施策略考核試卷
- 工程設(shè)計(jì)規(guī)范與標(biāo)準(zhǔn)考核試卷
- 機(jī)織運(yùn)動(dòng)服裝在運(yùn)動(dòng)康復(fù)中的角色考核試卷
- 技術(shù)服務(wù)多元化戰(zhàn)略與市場拓展考核試卷
- 服裝行業(yè)大數(shù)據(jù)分析應(yīng)用考核試卷
- 戶外登山鞋租賃與保養(yǎng)常識考核試卷
- 中小學(xué)生手衛(wèi)生課件
- 施工電梯備案合同范本
- 勞務(wù)永久合同范本
- 寵物購買意向合同范本
- 注冊安全工程師安全生產(chǎn)技術(shù)培訓(xùn)講義課件
- 美發(fā)店承包合同范本(2篇)
- 2023年蘇州健雄職業(yè)技術(shù)學(xué)院單招考試面試題庫及答案解析
- 公司組織架構(gòu)圖(可編輯模版)
- 人教版六年級科學(xué)下冊教案全冊
- TCITSA 24-2022 基于ETC的高速公路自由流收費(fèi)技術(shù)規(guī)范
- 叉車裝卸區(qū)域安全風(fēng)險(xiǎn)告知牌
- 2022屆江蘇省南京師范大學(xué)附屬中學(xué)高三(下)考前最后一模物理試題(解析版)
- 《普通生物學(xué)教案》word版
- 貴州省就業(yè)失業(yè)登記表
- 預(yù)防電信詐騙網(wǎng)絡(luò)詐騙講座PPT幻燈片課件
評論
0/150
提交評論