




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知定義在上的函數(shù)滿足,且當(dāng)時(shí),則方程的最小實(shí)根的值為( )ABCD2已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點(diǎn)、,O
2、為坐標(biāo)原點(diǎn)若雙曲線的離心率為2,三角形AOB的面積為,則p=( )A1BC2D33已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí), ,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是( )A3B5C7D94已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()AB或CD5已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限6觀察下列各式:,根據(jù)以上規(guī)律,則( )ABCD7已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為( )ABCD8根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為
3、()ABCD9已知函數(shù)(e為自然對(duì)數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個(gè)正整數(shù)解,則實(shí)數(shù)m的最大值為( )ABCD10將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是( )A18種B36種C54種D72種11已知復(fù)數(shù),為的共軛復(fù)數(shù),則( )ABCD12是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某中學(xué)高一年級(jí)有學(xué)生1200人,高二年級(jí)有學(xué)生900人,高三年級(jí)有學(xué)生1500人,現(xiàn)按年級(jí)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中抽取
4、一個(gè)容量為720的樣本進(jìn)行某項(xiàng)研究,則應(yīng)從高三年級(jí)學(xué)生中抽取_人14已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為_.15若實(shí)數(shù),滿足,則的最小值為_16若向量滿足,則實(shí)數(shù)的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列的前項(xiàng)和為,且滿足()求數(shù)列的通項(xiàng)公式;()證明:18(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),(1)求點(diǎn)的軌跡的方程;(2)過點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),求的取值范圍19(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,
5、點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)求證:四邊形是平行四邊形.四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.20(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:點(diǎn)的極角;面積的取值范圍.21(12分)如圖所示,已知平面,為等邊三角形,為邊上的中點(diǎn),且.()求證:面;()求證:平面平面;()求該幾何體的體積2
6、2(10分)購買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對(duì)擬購買該品牌汽車的消費(fèi)者,就購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計(jì)擬購買該品牌汽車的消費(fèi)群體對(duì)購車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對(duì)購車補(bǔ)貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計(jì)最近個(gè)月該品牌汽車的市場(chǎng)銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計(jì)該品牌汽車在年月份的銷售量約為多少萬輛?附:對(duì)于一組樣本數(shù)據(jù),其回歸直線的斜率
7、和截距的最小二乘估計(jì)分別為,.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過計(jì)算即可得到答案.【詳解】當(dāng)時(shí),所以,故當(dāng)時(shí),所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.【點(diǎn)睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.2C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,
8、則,漸近線方程為,求出交點(diǎn),則;選C考點(diǎn):1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;3D【解析】根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得 ,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)【詳解】是定義是上的奇函數(shù),滿足, ,可得,函數(shù)的周期為3,當(dāng)時(shí), ,令,則,解得或1,又函數(shù)是定義域?yàn)榈钠婧瘮?shù),在區(qū)間上,有由,取,得 ,得,又函數(shù)是周期為3的周期函數(shù),方程=0在區(qū)間上的解有 共9個(gè),故選D【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題4C【解析】由可得,故可求的值.【詳解】因?yàn)?,所以,故,?/p>
9、為正項(xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3) 為等比數(shù)列( )且公比為.5B【解析】分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.6B【解析】每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,故選:B【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通
10、過數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng)7B【解析】函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B【點(diǎn)睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍8A【解析】每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲
11、,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9A【解析】若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,設(shè),當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)單調(diào)遞減,當(dāng)時(shí),當(dāng),函數(shù)恒過點(diǎn),分別畫出與的圖象,如圖所示,若不等式有且只有一個(gè)正整數(shù)解,則的圖象在圖象的上方只有一個(gè)正整數(shù)值,且
12、,即,且,故實(shí)數(shù)m的最大值為,故選:A【點(diǎn)睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運(yùn)算能力.10B【解析】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.11C【解析】求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù).【詳解】.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.12D【解析】首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外
13、接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、分別為、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難
14、點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.二、填空題:本題共4小題,每小題5分,共20分。131【解析】先求得高三學(xué)生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學(xué)生占的比例為,所以應(yīng)從高三年級(jí)學(xué)生中抽取的人數(shù)為.【點(diǎn)睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.14【解析】設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點(diǎn),能求出雙曲線方程【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,雙曲線經(jīng)過拋物線焦點(diǎn),雙曲線方程為,故答案為:【點(diǎn)睛】本題主要考查雙曲線方
15、程的求法,考查拋物線、雙曲線簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題15【解析】由約束條件先畫出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當(dāng)平行線經(jīng)過點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線性規(guī)劃的知識(shí),解題的一般步驟為先畫出可行域,然后改寫目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.16【解析】根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(),()見解析【解析】(1)由,分和兩種情況,即可求得
16、數(shù)列的通項(xiàng)公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】()解:由題,得當(dāng)時(shí),得;當(dāng)時(shí),整理,得數(shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,;()證明:由()知,故故得證【點(diǎn)睛】本題主要考查根據(jù)的關(guān)系式求通項(xiàng)公式以及利用等比數(shù)列的前n項(xiàng)和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.18(1)(2)【解析】(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),則,設(shè),由得又由于,化簡(jiǎn)得的軌跡的方程為(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得,設(shè),則,由已知,則,故直線,令,則
17、,由于,所以,的取值范圍為【點(diǎn)睛】此題考查軌跡問題,橢圓和直線相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.19(1);(2)證明見解析;能,.【解析】(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)設(shè),寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo). 設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),可得線段相互平分,即證四邊形是平行四邊形;若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線C的方程是. (2)證明:由得,.設(shè), 則直線PA的方程為(),則直線PB的方程為(),由()和()解得:,所以.設(shè)點(diǎn),則直線AB的方程為.
18、由得,則,所以,所以線段PQ被x軸平分,即被線段CD平分.在中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.由知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.20(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)【解析】(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)將的極角代入直線的
19、極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,
20、所以,所以,所以點(diǎn)的極角為.解法1:直線的普通方程為.曲線上的點(diǎn)到直線的距離.當(dāng),即()時(shí),取到最小值為.當(dāng),即()時(shí),取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因?yàn)閳A的半徑為2,且圓心到直線的距離,因?yàn)?,所以圓與直線相離.所以圓上的點(diǎn)到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點(diǎn)睛】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程,點(diǎn)到直線的距離等.考查數(shù)學(xué)運(yùn)算能力,包括運(yùn)算原理的理解與應(yīng)用、運(yùn)算方法的選擇與優(yōu)化、運(yùn)算結(jié)果的檢驗(yàn)與改進(jìn)等.也兼考了數(shù)學(xué)抽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025項(xiàng)目合同風(fēng)險(xiǎn)管理與控制概述
- 2025年中外合資企業(yè)土地租賃合同范本
- 2025家庭室內(nèi)設(shè)計(jì)合同
- 2025私人住宅裝修合同
- 2025供暖合同范本
- 部編版九年級(jí)下冊(cè)語文專題復(fù)習(xí)課件(共8個(gè)專題318張)
- 2025農(nóng)產(chǎn)品交易合同模板
- 2024年樟樹選聘社區(qū)工作者真題
- 高一英語學(xué)案:預(yù)習(xí)導(dǎo)航5SectionⅢ
- 2024年四川職業(yè)技術(shù)學(xué)院招聘真題
- 養(yǎng)老年護(hù)理員職業(yè)道德規(guī)范
- 2025年-浙江建筑安全員A證考試題庫附答案
- 動(dòng)物生理學(xué)第十二章-泌乳
- 金屬礦床地下開采-全知識(shí)點(diǎn)
- 血站服務(wù)禮儀培訓(xùn)
- 八下歷史第三單元大單元教學(xué)設(shè)計(jì)
- 本科畢業(yè)論文完整范文(滿足查重要求)城市社區(qū)管理中存在的問題與對(duì)策研究
- 硼氫化鈉還原全文
- 武漢市控制性詳細(xì)規(guī)劃編制技術(shù)規(guī)程610
- 與父母依戀關(guān)系和與同伴依戀關(guān)系量表(IPPA)
- ANCA相關(guān)性小血管炎
評(píng)論
0/150
提交評(píng)論