版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2023年高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知純虛數(shù)滿足,其中為虛數(shù)單位,則實數(shù)等于( )AB1CD22已知函數(shù)為奇函數(shù),且,則( )A2B5C
2、1D33等差數(shù)列的前項和為,若,則數(shù)列的公差為( )A-2B2C4D74已知滿足,則( )ABCD5記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為( )ABCD6已知集合,則( )ABCD7已知實數(shù),函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是( )ABCD8若,則“”是“的展開式中項的系數(shù)為90”的( )A必要不充分條件B充分不必要條件C充要條件D既不充分也不必要條件9已知不重合的平面 和直線 ,則“ ”的充分不必要條件是( )A內(nèi)有無數(shù)條直線與平行B 且C 且D內(nèi)的任何直線都與平行10在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大
3、值是( )ABCD11已知平面和直線a,b,則下列命題正確的是( )A若,b,則B若,則C若,則D若,b,則12已知命題p:直線ab,且b平面,則a;命題q:直線l平面,任意直線m,則lm.下列命題為真命題的是( )ApqBp(非q)C(非p)qDp(非q)二、填空題:本題共4小題,每小題5分,共20分。13已知在ABC中,(2sin32,2cos32),(cos77,cos13),則_,ABC的面積為_14從編號為,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為_.15如圖,養(yǎng)殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形
4、養(yǎng)殖區(qū).為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為_百米.16已知各項均為正數(shù)的等比數(shù)列的前項積為,(且),則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值18(12分)已知函數(shù)(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),滿足,證明:19(12分)如圖,四棱錐中,底面為直角梯形,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當(dāng)PA的長為何值時,AC與平面PCD所成的角為?20(12分)如圖,在四棱錐
5、中,底面為矩形,側(cè)面底面,為棱的中點,為棱上任意一點,且不與點、點重合(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由21(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.22(10分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若恒成立,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解
6、析】先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應(yīng)的的值即可.【詳解】因為,所以,又因為是純虛數(shù),所以,所以.故選:B.【點睛】本題考查復(fù)數(shù)的除法運算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.2B【解析】由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.3B【解析】在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項公式求得公差.【詳解】在等差數(shù)列的前項和為,則則故選:B【點睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.4A【解析】利用兩角和與差的余弦公式展開計算可得
7、結(jié)果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.5C【解析】據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,表示的平面區(qū)域即為圖中的,根據(jù)幾何概率的計算公式可得,故選:C【點睛】本題主要考查了幾何概率的計算,本題是與面積有關(guān)的幾何概率模型解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積6C【解析】求出集合,計算出和,即可得出結(jié)論.【詳解】,.故選:C.【點睛】本題考查交集和并集的計算,考
8、查計算能力,屬于基礎(chǔ)題.7D【解析】根據(jù)題意,對于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得,再結(jié)合函數(shù)的單調(diào)性,分析可得,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,當(dāng),若為增函數(shù),則,當(dāng),若為增函數(shù),必有在上恒成立,變形可得:,又由,可得在上單調(diào)遞減,則,若在上恒成立,則有,若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,聯(lián)立可得:.故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).8B【解析】求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求
9、得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.9B【解析】根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A. 內(nèi)有無數(shù)條直線與平行,則相交或,排除;B. 且,故,當(dāng),不能得到 且,滿足;C. 且,則相交或,排除;D. 內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,
10、平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.10A【解析】根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,即,即,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【點睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運算,屬于中檔題.11C【解析】根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進(jìn)行判斷即可.【詳解】A:當(dāng)時,也可以滿足,b,故本命題不正確;B:當(dāng)時,也可以滿足,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng),時,能得
11、到,故本命題是正確的;D:當(dāng)時,也可以滿足,b,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.12C【解析】首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單
12、邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13 【解析】根據(jù)向量數(shù)量積的坐標(biāo)表示結(jié)合兩角差的正弦公式的逆用即可得解;結(jié)合求出,根據(jù)面積公式即可得解.【詳解】2(sin32cos77cos32sin77),故答案為:【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標(biāo)表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性強.14【解析】基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數(shù),第二次
13、抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個,分別為:,.所以第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識,屬于基礎(chǔ)題.15【解析】建系,將直線用方程表示出來,再用參數(shù)表示出線段的長度,最后利用導(dǎo)數(shù)來求函數(shù)最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標(biāo)系,則.設(shè)直線,即,則,所以,所以,則,則,當(dāng)時,則單調(diào)遞減,當(dāng)時,則單調(diào)遞增,所以當(dāng)時,最短,此時.故答案為:【點睛】本題考查導(dǎo)數(shù)的實際應(yīng)用,屬于中檔題.16【解析】利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對數(shù)運算求得的值.【
14、詳解】由于,所以,則,.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)特征值為或【解析】(1)先設(shè)矩陣,根據(jù),按照運算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值【詳解】解:(1)設(shè)矩陣由題意,因為,所以 ,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運算求解能力.18(1)(2)見解析【解析】(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即
15、可證明不等式.【詳解】解:(1)設(shè),在上單調(diào)遞減,在上單調(diào)遞增故有解,即的取值范圍為(2),當(dāng)且僅當(dāng)時等號成立,即當(dāng)且僅當(dāng),時等號成立,即成立【點睛】此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.19(1)證明見解析;(2)當(dāng)時,AC與平面PCD所成的角為.【解析】(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長【詳解】(1)證明:連接BD交AC于點O,連接OE,又平面ACE,平面ACE,平面ACE.(2),平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,平面就是AC與平面PCD所成的角,時,AC與平面P
16、CD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題20(1)證明見解析 (2)存在,為中點【解析】(1)證明面,即證明平面平面;(2)以為坐標(biāo)原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系利用向量方法得,解得,所以為中點【詳解】(1)由于為中點,又,故,所以為直角三角形且,即又因為面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四邊形為矩形,則兩兩垂直以為坐標(biāo)原點,為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系則,設(shè),則,設(shè)平面的法向量為,則有,令,則,則平面的一個法向量為,同理可得平面的一個法向量為,設(shè)平面與平面所成角為
17、,則由題意可得,解得,所以點為中點【點睛】本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.21(1);(2)【解析】(1)又題意知,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時,直線的斜率為0,此時(ii)當(dāng)直線的斜率為零時,.(iii)當(dāng)直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則.綜上,由(i)(ii)()得的取值范圍是.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運用函數(shù)知識求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年普通整流管芯片項目可行性研究報告
- 2025至2031年中國帶棚架松式絡(luò)筒機行業(yè)投資前景及策略咨詢研究報告
- 2025年室內(nèi)型電子顯示屏幕項目可行性研究報告
- 2025年噸包裝機項目可行性研究報告
- 2025至2031年中國丁維鈣粉行業(yè)投資前景及策略咨詢研究報告
- 2025年三氯乙基磷酸酯項目可行性研究報告
- 2025至2030年香水木大雙龍船項目投資價值分析報告
- 2025至2030年中國鋁條插角件數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年線性增壓內(nèi)壓力試驗機項目投資價值分析報告
- 2025至2030年環(huán)氧樹脂地坪面層涂料項目投資價值分析報告
- 牛津書蟲系列1-6級 雙語 4B-03.金銀島中英對照
- 2024-2025學(xué)年深圳市南山區(qū)六年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2024-2030年中國免疫細(xì)胞存儲行業(yè)市場發(fā)展分析及競爭形勢與投資戰(zhàn)略研究報告
- 工貿(mào)行業(yè)企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)實施指南
- 機械基礎(chǔ)(少學(xué)時)(第三版) 課件全套 第0-15章 緒論、帶傳動-氣壓傳動
- T-CACM 1560.6-2023 中醫(yī)養(yǎng)生保健服務(wù)(非醫(yī)療)技術(shù)操作規(guī)范穴位貼敷
- 07J912-1變配電所建筑構(gòu)造
- 鋰離子電池串并聯(lián)成組優(yōu)化研究
- 人教版小學(xué)數(shù)學(xué)一年級下冊第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 大酒店風(fēng)險分級管控和隱患排查治理雙體系文件
評論
0/150
提交評論