2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)_第1頁
2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)_第2頁
2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)_第3頁
2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)_第4頁
2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年湖南省邵陽市某學校數(shù)學高職單招模擬考試(含答案)學校:________班級:________姓名:________考號:________

一、單選題(10題)1.在空間中垂直于同一條直線的兩條直線一定是()A.平行B.相交C.異面D.前三種情況都有可能

2.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為()A.內(nèi)切B.相交C.外切D.相離

3.用列舉法表示小于2的自然數(shù)正確的是A.{1,0}B.{1,2}C.{1}D.{-1,1,0}

4.點A(a,5)到直線如4x-3y=3的距離不小于6時,則a的取值為()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)

5.將邊長為1的正方形以其一邊所在直線為旋轉軸旋轉一周,所得幾何體的側面積是()A.4πB.3πC.2πD.π

6.A.3

B.8

C.

7.{已知集合A={-1,0,1},B={x|-1≤x<1}則A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}

8.一元二次不等式x2+x-6<0的解集為A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

9.過點A(2,1),B(3,2)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是()A.f(x)=1/x2

B.f(x)=x2+1

C.f(x)=x3

D.f(x)-2-x

二、填空題(10題)11.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f⑴=______.

12.函數(shù)y=3sin(2x+1)的最小正周期為

。

13.

14.

15.二項式的展開式中常數(shù)項等于_____.

16.集合A={1,2,3}的子集的個數(shù)是

。

17.

18.

19.若長方體的長、寬、高分別為1,2,3,則其對角線長為

。

20.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.

三、計算題(5題)21.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

22.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

23.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

24.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

25.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、證明題(5題)26.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2

+(y+1)2

=8.

27.己知sin(θ+α)=sin(θ+β),求證:

28.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.

29.

30.△ABC的三邊分別為a,b,c,為且,求證∠C=

五、簡答題(5題)31.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長

32.證明:函數(shù)是奇函數(shù)

33.已知函數(shù):,求x的取值范圍。

34.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)

35.已知求tan(a-2b)的值

六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

37.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

38.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

39.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

40.

參考答案

1.D

2.B圓與圓的位置關系,兩圓相交

3.A

4.C

5.C立體幾何的側面積.由幾何體的形成過程所得幾何體為圓柱,底面半徑為1,高為1,其側面積S=2πrh=2π×1×1=2π.

6.A

7.B集合的運算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.

8.A

9.B直線的兩點式方程.點代入驗證方程.

10.A函數(shù)的奇偶性,單調(diào)性.因為:y=x2在(-∞,0)上是單調(diào)遞減的,故y=1/x2在(-∞,0)上是單調(diào)遞增的,又y=1/x2為偶函數(shù),故A對;y=x2+1在(-∞,0)上是單調(diào)遞減的,故B錯;y=x3為奇函數(shù),故C錯;y=2-x為非奇非偶函數(shù),故D錯.

11.-3.函數(shù)的奇偶性的應用.∵f(x)是定義在只上的奇函數(shù),且x≤0時,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.

12.

13.2π/3

14.

15.15,由二項展開式的通項可得,令12-3r=0,得r=4,所以常數(shù)項為。

16.8

17.(3,-4)

18.33

19.

,

20.-3或7,

21.

22.

23.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

24.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

25.

26.

27.

28.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即

29.

30.

31.

32.證明:∵∴則,此函數(shù)為奇函數(shù)

33.

X>4

34.

35.

36.

37.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為

38.

39.解:(1)斜率k=5/3,設直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設圓心為C(a,b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論