




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年云南省麗江市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.(X-2)6的展開式中X2的系數(shù)是D()A.96B.-240C.-96D.240
2.從1,2,3,4這4個(gè)數(shù)中任取兩個(gè)數(shù),則取出的兩數(shù)都是奇數(shù)的概率是()A.2/3B.1/2C.1/6D.1/3
3.下列命題是真命題的是A.B.C.D.
4.橢圓x2/2+y2=1的焦距為()A.1
B.2
C.3
D.
5.為了得到函數(shù)y=sin1/3x的圖象,只需把函數(shù)y=sinx圖象上所有的點(diǎn)的()A.橫坐標(biāo)伸長(zhǎng)到原來的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮小到原來的1/3倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)到原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮小到原來的1/3倍,橫坐標(biāo)不變
6.集合M={a,b},N={a+1,3},a,b為實(shí)數(shù),若M∩N={2},則M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}
7.已知向量a=(1,k),b=(2,2),且a+b與a共線,那么a×b的值為()A.1B.2C.3D.4
8.在等比數(shù)列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
9.A.-1B.-4C.4D.2
10.若a0.6<a<a0.4,則a的取值范圍為()</aA.a>1B.0<a<1C.a>0D.無法確定
二、填空題(10題)11.在銳角三角形ABC中,BC=1,B=2A,則=_____.
12.已知△ABC中,∠A,∠B,∠C所對(duì)邊為a,b,c,C=30°,a=c=2.則b=____.
13.方程擴(kuò)4x-3×2x-4=0的根為______.
14.設(shè)平面向量a=(2,sinα),b=(cosα,1/6),且a//b,則sin2α的值是_____.
15.到x軸的距離等于3的點(diǎn)的軌跡方程是_____.
16.
17.
18.
19.函數(shù)y=3sin(2x+1)的最小正周期為
。
20.
三、計(jì)算題(5題)21.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說明理由.
22.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
23.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
24.解不等式4<|1-3x|<7
25.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
四、證明題(5題)26.△ABC的三邊分別為a,b,c,為且,求證∠C=
27.己知sin(θ+α)=sin(θ+β),求證:
28.若x∈(0,1),求證:log3X3<log3X<X3.
29.
30.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
五、簡(jiǎn)答題(5題)31.如圖:在長(zhǎng)方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
32.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
33.點(diǎn)A是BCD所在平面外的一點(diǎn),且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
34.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。
35.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
37.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
39.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
40.
參考答案
1.D
2.C古典概型.任意取到兩個(gè)數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有1種:1,3;則要求的概率為1/6.
3.A
4.B橢圓的定義.a2=1,b2=1,
5.A三角函數(shù)圖像的性質(zhì).y=sinx橫坐標(biāo)伸長(zhǎng)到原來的3倍,縱坐標(biāo)不變y=sin1/3x.
6.D集合的運(yùn)算.∵M(jìn)∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M(jìn)={a,b},∴b=2.AUB={1,2,3}.
7.D平面向量的線性運(yùn)算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b與a共線.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
8.D設(shè)公比等于q,則由題意可得,,解得,或。當(dāng)時(shí),,當(dāng)時(shí),,所以結(jié)果為。
9.C
10.B已知函數(shù)是指數(shù)函數(shù),當(dāng)a在(0,1)范圍內(nèi)時(shí)函數(shù)單調(diào)遞減,所以選B。
11.2
12.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
13.2解方程.原方程即為(2x)-3.2x-4=0,解得2x=4或2x=-1(舍去),解得x=2.
14.2/3平面向量的線性運(yùn)算,三角函數(shù)恒等變換.因?yàn)閍//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
15.y=±3,點(diǎn)到x軸的距離就是其縱坐標(biāo),因此軌跡方程為y=±3。
16.π/2
17.0
18.
19.
20.75
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
33.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點(diǎn)O,以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點(diǎn)O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點(diǎn),過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
34.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
35.(1)(2)
36.
37.
38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b
=4,此時(shí)r=4,圓的方程為(x-4)2
+(y-4)2=16當(dāng)a=1時(shí),b
=-1,此時(shí)r=1,圓的方程為(x-1)2
+(y+1)2=1
39.解:(1)直線l過A(0,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 黑龍江財(cái)經(jīng)學(xué)院《學(xué)年綜合實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 營(yíng)口理工學(xué)院《刑法與刑事訴訟法學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南藝術(shù)職業(yè)學(xué)院《網(wǎng)絡(luò)爬蟲與數(shù)據(jù)采集》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年中國(guó)超市托盒行業(yè)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025-2030年提拉米蘇奶昔行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年手工串珠首飾行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年即食鮑魚罐頭行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年堅(jiān)果炒貨作坊行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年廚房健康咨詢平臺(tái)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年地下管道鋪設(shè)機(jī)器人行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 長(zhǎng)江委水文局2025年校園招聘17人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年湖南韶山干部學(xué)院公開招聘15人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 健身新人直播流程
- 不可切除肺癌放療聯(lián)合免疫治療專家共識(shí)(2024年版)j解讀
- DB23/T 3657-2023醫(yī)養(yǎng)結(jié)合機(jī)構(gòu)服務(wù)質(zhì)量評(píng)價(jià)規(guī)范
- 教科版科學(xué)六年級(jí)下冊(cè)14《設(shè)計(jì)塔臺(tái)模型》課件
- 企業(yè)的生產(chǎn)過程課件
- 智研咨詢發(fā)布:2024年中國(guó)MVR蒸汽機(jī)械行業(yè)市場(chǎng)全景調(diào)查及投資前景預(yù)測(cè)報(bào)告
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對(duì)法》及其應(yīng)用案例
- JGJ46-2024 建筑與市政工程施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論