下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
高考數(shù)學易錯知識點歸納一、集合與函數(shù)1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。2.在應用條件時,易A忽略是空集的情況3.你會用補集的思想解決有關問題嗎?4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別。6.求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則。7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱。8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域。9.原函數(shù)在區(qū)間[,]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式③求參數(shù)的范圍(恒成立問題)。這幾種基本應用你掌握了嗎?14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數(shù)求最值?16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?二、不等式18.利用均值不等式求最值時,你是否注意到:“一正二定三等”。19.絕對值不等式的解法及其幾何意義是什么?20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示不能用不等式表示。23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘同時要注意“同號可倒”即》》0,a三、數(shù)列24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數(shù)。26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?27.數(shù)列單調(diào)性問題能否等同于對應函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)28.應用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。四、三角函數(shù)29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角終邊相同的角和相等的角的區(qū)別嗎?30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。異角化同角,異名化同名,高次化低次)33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是34.你還記得某些特殊角的三角函數(shù)值嗎?35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:(1)函數(shù)的圖象的平移為“左+右,上+下”如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即。(2)方程表示的圖形的平移為“左+右,上下+”如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即。(3)點的平移公式:點按向量平移到點,則。37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時易忘比值還等于2R.五、平面向量40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。41.數(shù)量積與兩個實數(shù)乘積的區(qū)別:在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有。在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。六、解析幾何43.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?44.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。45.直線的傾斜角、到的角、與的夾角的取值范圍依次是。46.定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?47.對不重合的兩條直線(建議在解題時,討論后利用斜率和截距)48.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。49.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫出目標函數(shù)②寫出線性約束條件③畫出可行域④作出目標函數(shù)對應的系列平行線,找到并求出最優(yōu)解⑦應用題一定要有答。)50.三種圓錐曲線的定義、圖形、標準方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?51.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?52.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?53.通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結(jié)論?)54.在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行)。55.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標系了,是否需要建立直角坐標系?七、立體幾何56.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。57.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?58.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見59.線面平行的判定定理和性質(zhì)定理在應用時都是三個條件,但這三個條件易混為一談面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導致證明過程跨步太大。60.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。61.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。62.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?63.兩條異面直線所成的角的范圍:0°《α≤90°直線與平面所成的角的范圍:0o≤α≤90°二面角的平面角的取值范圍:0°≤α≤180°64.你知道異面直線上兩點間的距離公式如何運用嗎?65.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《診斷性試驗》課件
- 2025年全球新型穿戴設備行業(yè)概況及應用領域調(diào)研報告
- 2024年農(nóng)業(yè)局上半年工作總結(jié)
- 稅務知識普及總結(jié)
- 小暑節(jié)氣消費解讀
- 雙十一:餐飲行業(yè)的轉(zhuǎn)型新機遇
- 汽車電商營銷蛻變
- 小學六年級畢業(yè)演講稿范文合集8篇
- 2023年-2024年項目部安全管理人員安全培訓考試題【考點梳理】
- 2023年-2024年項目部安全培訓考試題附完整答案(考點梳理)
- 采購合同范例壁布
- 公司員工出差車輛免責協(xié)議書
- 2024年陜西榆林市神木市公共服務輔助人員招聘775人歷年管理單位遴選500模擬題附帶答案詳解
- 安全生產(chǎn)事故案例分析
- 期末檢測卷(一)(試卷)-2024-2025學年外研版(三起)英語六年級上冊(含答案含聽力原文無音頻)
- 《防范于心反詐于行》中小學防范電信網(wǎng)絡詐騙知識宣傳課件
- 2023-2024學年北京市通州區(qū)九年級(上)期末語文試卷
- 綜合機械化固體充填采煤技術要求-編制說明
- 十人聯(lián)名推薦表
- 七、分蛋糕博弈
- 斷橋隔熱鋁門窗計算書
評論
0/150
提交評論