




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.已知拋物線與x軸相交于點A,B(點A在點B左側),頂點為M.平移該拋物線,使點M平移后的對應點M'落在x軸上,點B平移后的對應點B'落在y軸上,則平移后的拋物線解析式為()A. B. C. D.2.從1到9這9個自然數(shù)中任取一個,是偶數(shù)的概率是()A. B. C. D.3.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.如圖,在平面直角坐標系xOy中,二次函數(shù)的圖象經(jīng)過點A,B,對系數(shù)和判斷正確的是()A. B. C. D.5.四邊形ABCD的對角線互相平分,要使它變?yōu)榫匦危枰砑拥臈l件是(
)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD6.下列事件中,是必然事件的是()A.拋擲一枚硬幣正面向上 B.從一副完整撲克牌中任抽一張,恰好抽到紅桃C.今天太陽從西邊升起 D.從4件紅衣服和2件黑衣服中任抽3件有紅衣服7.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.108.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m9.某數(shù)學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]10.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘一,其濃度為貝克/立方米,數(shù)據(jù)用科學記數(shù)法可表示為()A. B. C. D.二、填空題(每小題3分,共24分)11.一個不透明的口袋中有三個完全相同的小球,把它們分別標號為1,2,1.隨機摸出一個小球然后放回,再隨機摸出一個小球,則兩次摸出的小球標號相同的概率是_____.12.如圖,P是等邊三角形ABC內一點,將線段BP繞點B逆時針旋轉60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.13.如圖,已知點A,點C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點B,OC交AB于點D,若CD=OD,則△AOD與△BCD的面積比為__.14.如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調整自己的位置,使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=10m,則AB=_____m.15.在陽光下,高6m的旗桿在水平地面上的影子長為4m,此時測得附近一個建筑物的影子長為16m,則該建筑物的高度是_____m.16.如圖,量角器外沿上有A、B兩點,它們的讀數(shù)分別是75°、45°,則∠1的度數(shù)為_____.17.從一副撲克牌中的13張黑桃牌中隨機抽取一張,它是王牌的概率為____.18.已知點A(﹣2,m)、B(2,n)都在拋物線y=x2+2x﹣t上,則m與n的大小關系是m_____n.(填“>”、“<”或“=”)三、解答題(共66分)19.(10分)如圖,在中,,是邊上的中線,過點作,垂足為,交于點,.(1)求的值:(2)若,求的長.20.(6分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當點O在△ABC的內部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關系?(直接寫出答案,不需要說明理由)21.(6分)在⊙O中,AB為直徑,C為⊙O上一點.(1)如圖1,過點C作⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大小.22.(8分)如圖,已知AD?AC=AB?AE,∠DAE=∠BAC.求證:△DAB∽△EAC.23.(8分)“脫貧攻堅戰(zhàn)”打響以來,全國貧困人口減少了8000多萬人。某市為了扎實落實脫貧攻堅中“兩不愁,三保障”的住房保障工作,2017年投入5億元資金,之后投入資金逐年增長,2019年投入7.2億元資金用于保障性住房建設.(1)求該市這兩年投入資金的年平均增長率.(2)2020年該市計劃保持相同的年平均増長率投入資金用于保障性住房建設,如果每戶能得到保障房補助款3萬元,則2020年該市能夠幫助多少戶建設保障性住房?24.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,我市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,我市2016年的綠色建筑面積約為950萬平方米,2018年達到了1862萬平方米.若2017年、2018年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:(1)求這兩年我市推行綠色建筑面積的年平均增長率;(2)2019年我市計劃推行綠色建筑面積達到2400萬平方米.如果2019年仍保持相同的年平均增長率,請你預測2019年我市能否完成計劃目標?25.(10分)某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數(shù)據(jù)如下:x
30
32
34
36
y
40
36
32
28
(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?26.(10分)如圖,是直徑AB所對的半圓弧,點C在上,且∠CAB=30°,D為AB邊上的動點(點D與點B不重合),連接CD,過點D作DE⊥CD交直線AC于點E.小明根據(jù)學習函數(shù)的經(jīng)驗,對線段AE,AD長度之間的關系進行了探究.下面是小明的探究過程,請補充完整:(1)對于點D在AB上的不同位置,畫圖、測量,得到線段AE,AD長度的幾組值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9AE/cm0.000.410.771.001.151.000.001.004.04…AD/cm0.000.501.001.412.002.453.003.213.50…在AE,AD的長度這兩個量中,確定_______的長度是自變量,________的長度是這個自變量的函數(shù);(2)在下面的平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象;(3)結合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為________cm(結果精確到0.1).
參考答案一、選擇題(每小題3分,共30分)1、A【解析】解:當y=0,則,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),=,∴M點坐標為:(2,﹣1).∵平移該拋物線,使點M平移后的對應點M'落在x軸上,點B平移后的對應點B'落在y軸上,∴拋物線向上平移一個單位長度,再向左平移3個單位長度即可,∴平移后的解析式為:=.故選A.2、B【解析】∵在1到9這9個自然數(shù)中,偶數(shù)共有4個,∴從這9個自然數(shù)中任取一個,是偶數(shù)的概率為:.故選B.3、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,是中心對稱圖形,故此選項正確;
B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
C、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、D【分析】根據(jù)二次函數(shù)y=ax2+bx+1的圖象經(jīng)過點A,B,畫出函數(shù)圖象的草圖,根據(jù)開口方向和對稱軸即可判斷.【詳解】解:由二次函數(shù)y=ax2+bx+1可知圖象經(jīng)過點(0,1),
∵二次函數(shù)y=ax2+bx+1的圖象還經(jīng)過點A,B,
則函數(shù)圖象如圖所示,
拋物線開口向下,∴a<0,,又對稱軸在y軸右側,即,∴b>0,故選D5、D【解析】四邊形ABCD的對角線互相平分,則說明四邊形是平行四邊形,由矩形的判定定理知,只需添加條件是對角線相等.【詳解】添加AC=BD,
∵四邊形ABCD的對角線互相平分,
∴四邊形ABCD是平行四邊形,
∵AC=BD,根據(jù)矩形判定定理對角線相等的平行四邊形是矩形,
∴四邊形ABCD是矩形,
故選D.【點睛】考查了矩形的判定,關鍵是掌握矩形的判定方法:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.6、D【分析】必然事件是指在一定條件下一定會發(fā)生的事件,根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、拋擲一枚硬幣正面向上,是隨機事件,故本選項錯誤;
B、從一副完整撲克牌中任抽一張,恰好抽到紅桃,是隨機事件.故本選項錯誤;
C、今天太陽從西邊升起,是不可能事件,故本選項錯誤;
D、從4件紅衣服和2件黑衣服中任抽3件有紅衣服,是必然事件,故本選項正確.
故選:D.【點睛】本題考查了事件發(fā)生的可能性,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、C【解析】由矩形的性質得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可。【詳解】∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,
∴∠EBF=90°,
∵F為BC的中點,
∴BF=CF,
在△BEF和△CDF中,,
∴△BEF≌△CDF(ASA),
∴BE=CD=AB,
∴AE=2AB=2CD,
∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.【點睛】本題考查了矩形的性質、全等三角形的判定與性質、相似三角形的判定與性質;熟練掌握有關的性質與判定是解決問題的關鍵.8、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.9、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象10、A【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.0000963,這個數(shù)據(jù)用科學記數(shù)法可表示為9.63×.
故選:A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.二、填空題(每小題3分,共24分)11、【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出的小球標號相同的情況,再利用概率公式即可求得答案.【詳解】根據(jù)題意,畫樹狀圖如下:共有9種等可能結果,其中兩次摸出的小球標號相同的有1種結果,所以兩次摸出的小球標號相同的概率是,故答案為.【點睛】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
錯因分析中等難度題.失分的原因有兩個:(1)沒有掌握放回型和不放回型概率計算的區(qū)別;(2)未找全標號相同的可能結果.
12、【分析】由旋轉的性質可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉化為求兩個特殊三角形的面積即可.【詳解】解:連接PQ,由旋轉的性質可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等邊三角形,∴PQ=BP,在等邊三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ與△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因為,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案為:【點睛】本題主要考查了旋轉的性質、全等三角形的判定、勾股定理的逆定理及特殊三角形的面積,解題的關鍵是作出輔助線,轉化為特殊三角形進行求解.13、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設D(m,n),則C(2m,2n),再根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=4mn,則A(m,4n),然后根據(jù)三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點睛】考核知識點:平行線分線段成比例,反比例函數(shù);數(shù)形結合,利用平行線分線段成比例,反比例函數(shù)定義求出點的坐標關系是關鍵.14、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上AC的長即可求得樹AB的高.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案為:6.5【點睛】本題考查相似三角形的應用,如果兩個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.15、1【分析】先設建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關系式求出h的值即可.【詳解】解:設建筑物的高為h米,則=,解得h=1.故答案為:1.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物高與影長成正比是解答此題的關鍵.16、15°【分析】根據(jù)圓周角和圓心角的關系解答即可.【詳解】解:由圖可知,∠AOB=75°﹣45°=30°,根據(jù)同弧所對的圓周角等于它所對圓心角的一半可知,∠1=∠AOB=×30°=15°.故答案為15°【點睛】本題考查了圓周角定理,熟練掌握圓周角定理是解題的關鍵.17、1【分析】根據(jù)是王牌的張數(shù)為1可得出結論.【詳解】∵13張牌全是黑桃,王牌是1張,∴抽到王牌的概率是1÷13=1,故答案為:1.【點睛】本題考查了概率的公式計算,熟記概率=所求情況數(shù)與總情況數(shù)之比是解題的關鍵.18、<【解析】根據(jù)二次函數(shù)的性質得到拋物線y=x2+2x-t的開口向上,有最小值為-t-1,對稱軸為直線x=-1,則在對稱軸左側,y隨x的增大而減小,在對稱軸右側,y隨x的增大而增大,進而解答即可.【詳解】∵y=x2+2x-t=(x+1)2-t-1,∴a=1>0,有最小值為-t-1,∴拋物線開口向上,∵拋物線y=x2+2x-t對稱軸為直線x=-1,∵-2<0<2,∴m<n.故答案為:<三、解答題(共66分)19、(1);(2)4【分析】(1)根據(jù)∠ACB=90°,CD是斜邊AB上的中線,可得出CD=BD,則∠B=∠BCD,再由AE⊥CD,可證明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根據(jù)sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根據(jù)勾股定理即可得出結論.【詳解】(1)∵,是斜邊的中線,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【點睛】本題主要考查了勾股定理和銳角三角比,熟練掌握根據(jù)銳角三角比解直角三角形是解題的關鍵.20、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結論;(2)根據(jù)三角形的中位線定理結合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D,G,F(xiàn)分別是AB,OB,OC的中點,∴,,當AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,平行四邊形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.21、(1)∠P=36°;(2)∠P=30°.【分析】(1)連接OC,首先根據(jù)切線的性質得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答案;(2)根據(jù)E為AC的中點得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD=12∠AOD=40°【詳解】解:(1)如圖,連接OC,∵⊙O與PC相切于點C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E為AC的中點,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一個外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【點睛】本題考查切線的性質.22、證明見解析【分析】根據(jù)相似三角形的判定定理即可證明△DAB∽△EAC.【詳解】證明:∵AD?AC=AB?AE,∴,∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC,∴△DAB∽△EAC.【點睛】本題考查三角形相似的判定定理,正確理解三角形相似的判定定理是本題解題的關鍵.23、(1)年平均增長率為20%;(2)28800戶【分析】(1)一般用增長后的量=增長前的量×(1+增長率),今年年要投入資金是5(1+x)億元,在今年的基礎上再增長x,就是明年的資金投入5(1+x)(1+x),由此可列出方程5(1+x)2=7.2,求解即可;(2)計算出2020年投入資金即可得解.【詳解】(1)解:設年平均增長率為x5(1+x)2=7.2解得x1=﹣2.2(舍去),x2=0.2∴x=0.2=20%答:年平均增長率為20%;(2)7.2×(1+20%)=8.64(億元)=86400(萬元),86400÷3=28800(戶),答:2020年能幫助28800戶建設保障性住房.【點睛】本題考查了一元二次方程中增長率的知識.增長前的量×(1+年平均增長率)年數(shù)=增長后的量.24、(1)這兩年我市推行綠色建筑面積的年平均增長率為40%;(2)如果2019年仍保持相同的年平均增長率,2019年我市能完成計劃目標.【分析】(1)設這兩年我市推行綠色建筑面積的年平均增長率x,根據(jù)2016年的綠色建筑面積約為950萬平方米和2018年達到了1862萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2019年綠色建筑面積,再與計劃推行綠色建筑面積達到2400萬平方米進行比較,即可得出答案.【詳解】(1)設這兩年我市推行綠色建筑面積的年平均增長率為x,則有950(1+x)2=1862,解得,x1=0.4,x2=?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制定質量標準
- 跟骨骨折經(jīng)皮復位與置釘知識2025
- 中國古代文學作品選輔導
- DeepSeek大模型在醫(yī)學影像診斷智能識別中的應用方案
- 2025年四川省綿陽市安州八年級中考一模生物試題 (含答案)
- 2025年甘肅省武威市涼州區(qū)松樹、永昌九年制學校中考三模語文試題(含答案)
- 2025年廣東省初中畢業(yè)生學業(yè)考試英語模擬試題(文字版無答案)
- 后置埋件安裝垂直度技術專題
- 2025合同能源管理EMC(EPC)融資及信用保障
- 2025年北京市二手車交易合同
- 2025年中國氫氟酸市場研究報告
- 阿爾茨海默病疾病修飾治療專家共識(2025版)解讀
- 設備故障應急維修預案
- 礦井電氣安全培訓課件
- (3篇)2025年春季形勢與政策大作業(yè):怎樣正確理解全過程人民民主的歷史邏輯、實踐邏輯、理論邏輯?與專題測驗(1-5)附答案
- 吉林2025年生態(tài)環(huán)境部松遼流域生態(tài)環(huán)境監(jiān)督管理局生態(tài)環(huán)境監(jiān)測與科學研究中心招聘筆試歷年參考題庫附帶答案詳解
- 景區(qū)設備聯(lián)營協(xié)議書
- 2025年虛擬現(xiàn)實與增強現(xiàn)實技術考試試題及答案
- TSG Z7002-2022特種設備檢測機構核準規(guī)則
- 鍋爐檢修作業(yè)安全保障方案
- 2025-2030中國三醋酸纖維素膜行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
評論
0/150
提交評論