



版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學年高考數(shù)學模擬測試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)且的圖象是()A. B.C. D.2.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.3.設(shè)是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.5.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.46.設(shè)全集,集合,,則集合()A. B. C. D.7.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.8.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-19.已知,則()A.5 B. C.13 D.10.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值11.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.212.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________14.的展開式中的常數(shù)項為__________.15.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.16.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.18.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.19.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.20.(12分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實數(shù),使得,求證:21.(12分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.22.(10分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進行對比分析,建立了兩個函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達到90億元,預測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【題目詳解】由題可知定義域為,,是偶函數(shù),關(guān)于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【答案點睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.2、D【答案解析】
依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【題目詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【答案點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題.3、A【答案解析】
根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【題目詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【答案點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題.4、D【答案解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【題目詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【答案點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.5、A【答案解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【題目詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【答案點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.6、C【答案解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.7、B【答案解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【題目詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【答案點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.8、D【答案解析】
利用向量模的運算列方程,結(jié)合向量數(shù)量積的運算,求得實數(shù)的值.【題目詳解】由于,所以,即,,即,解得或.故選:D【答案點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.9、C【答案解析】
先化簡復數(shù),再求,最后求即可.【題目詳解】解:,,故選:C【答案點睛】考查復數(shù)的運算,是基礎(chǔ)題.10、B【答案解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【題目詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【答案點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.11、B【答案解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【題目詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.12、A【答案解析】
結(jié)合已知可知,可求,進而可求,代入,結(jié)合,可求,即可判斷.【題目詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當時,為函數(shù)的一個極小值點,而.故選:.【答案點睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應用,解題的關(guān)鍵是性質(zhì)的靈活應用.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【題目詳解】因為關(guān)于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【答案點睛】本題主要考查學生運用轉(zhuǎn)化與化歸思想的能力,方程有解問題轉(zhuǎn)化成兩函數(shù)的圖像有交點問題,是常見的轉(zhuǎn)化方式.14、31【答案解析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【題目詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【答案點睛】本題考查二項式定理及其展開式的通項公式,求某項的導數(shù),考查計算能力.15、【答案解析】
三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結(jié)論.【題目詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【答案點睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.16、【答案解析】
直接計算得到答案,根據(jù)題意得到,,解得答案.【題目詳解】,故,當時,,故,解得.故答案為:;.【答案點睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學生對于三角函數(shù)知識的綜合應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【題目詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【答案點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.18、(1)證明見解析(2)【答案解析】
(1)取中點為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【題目詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【答案點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.19、(1)(2)證明見解析;定點坐標為【答案解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【題目詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點【答案點睛】涉及橢圓的弦長、中點、距離等相關(guān)問題時,一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.20、(1)時,函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,;(2)見解析【答案解析】
(1)求出函數(shù)的定義域與導函數(shù),利用導數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構(gòu)造函數(shù),,利用導數(shù)研究函數(shù)的單調(diào)性與最值,即可得證;【題目詳解】解:(1)因為定義域為,所以,時,,即在和上單調(diào)遞增,當時,,即函數(shù)在單調(diào)遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調(diào)遞增;令,解得,即在上單調(diào)遞減;則在取得極小值,也就是最小值,從而結(jié)論得證.【答案點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與極值,利用導數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.21、(1)或(2).【答案解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【題目詳解】解:(1)由題意可得,直線與圓相切當斜率不存在時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美容美發(fā)店員工入股2025年度全新合作框架合同匯編
- 2025年度高端服裝店品牌代理權(quán)轉(zhuǎn)讓合同范本
- 砌體抹灰勞務分包合同書
- 工業(yè)生產(chǎn)過程質(zhì)量控制要點
- 農(nóng)業(yè)養(yǎng)殖業(yè)智能化養(yǎng)殖管理系統(tǒng)建設(shè)
- 新能源車充電樁建設(shè)合同
- 汽車工程車輛維護與故障診斷技能考試試題集
- 中學生物多樣性的感悟
- 城市商業(yè)管理系統(tǒng)升級服務協(xié)議
- 給排水安裝工程勞務合同
- 《西式點心制作》課件-抹茶戚風蛋糕卷
- MOOC 體能攻略-浙江工商大學 中國大學慕課答案
- 部編版二年級語文下冊第一單元大單元整體作業(yè)設(shè)計
- 中國十五冶招聘線上筆試測評題庫
- xx基層團支部建設(shè)培訓
- 2020年山西省公務員錄用考試《行測》真題及答案
- 關(guān)于某工廠減免部分利息的申請
- 醫(yī)務人員手衛(wèi)生規(guī)范培訓課件預防醫(yī)院感染的手衛(wèi)生措施
- 《反竊電技術(shù)》課件
- 學生宿舍電路負荷和電線阻燃要求
- 2023年污水處理行業(yè)洞察報告及未來五至十年預測分析報告(修訂版)
評論
0/150
提交評論