




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.633.已知,滿足約束條件,則的最大值為A. B. C. D.4.如果直線與圓相交,則點(diǎn)與圓C的位置關(guān)系是()A.點(diǎn)M在圓C上 B.點(diǎn)M在圓C外C.點(diǎn)M在圓C內(nèi) D.上述三種情況都有可能5.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.6.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.7.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn).則雙曲線的離心率是()A. B. C. D.9.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.10.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有11.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.12.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中的系數(shù)為,則_______.14.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個(gè)邊長均為x的小正方形,然后做成一個(gè)無蓋方盒,該方盒容積的最大值是________.15.某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.16.的展開式中的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,,的角平分線與交于點(diǎn),.(Ⅰ)求;(Ⅱ)求的面積.18.(12分)已知橢圓:的離心率為,右焦點(diǎn)為拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點(diǎn),過作兩條射線,分別交橢圓于、兩點(diǎn),若、斜率之積為,求證:的面積為定值.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.20.(12分)設(shè)函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實(shí)數(shù)的取值范圍;(2)若,證明:.21.(12分)已知,均為正數(shù),且.證明:(1);(2).22.(10分)已知橢圓的右頂點(diǎn)為,點(diǎn)在軸上,線段與橢圓的交點(diǎn)在第一象限,過點(diǎn)的直線與橢圓相切,且直線交軸于.設(shè)過點(diǎn)且平行于直線的直線交軸于點(diǎn).(Ⅰ)當(dāng)為線段的中點(diǎn)時(shí),求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
確定點(diǎn)為外心,代入化簡得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長的計(jì)算,意在考查學(xué)生的計(jì)算能力.2、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時(shí),則的最大值為15,故選B.考點(diǎn):程序框圖.3、D【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.4、B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點(diǎn)到圓的圓心的距離大于半徑.即點(diǎn)與圓的位置關(guān)系是點(diǎn)在圓外.故選:【點(diǎn)睛】本題主要考查直線與圓相交的性質(zhì),考查點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題.5、D【解析】
先由是偶函數(shù),得到關(guān)于直線對稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.6、C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點(diǎn)睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.7、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.8、B【解析】
由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.9、A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.10、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.11、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.12、B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
首先求出的展開項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開項(xiàng)的系數(shù),屬于簡單題.14、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.15、【解析】
直接計(jì)算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點(diǎn)睛】本題考查正太分布中原則,審清題意,簡單計(jì)算,屬基礎(chǔ)題.16、3【解析】
分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€(gè)因式取1時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€(gè)因式取時(shí),第二個(gè)因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.18、(1);(2)見解析【解析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標(biāo),通過、斜率之積為列方程可得的值,進(jìn)而可得的面積;當(dāng)與軸不垂直時(shí),設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點(diǎn)為,,,,,,橢圓方程為;(2)(ⅰ)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當(dāng)與軸不垂直時(shí),設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點(diǎn)睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達(dá)定理的應(yīng)用,考查了學(xué)生的計(jì)算能力,是中檔題.19、(1),;(2)或【解析】
(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點(diǎn)的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的圓心為,設(shè),所以,則由,即為點(diǎn)軌跡的極坐標(biāo)方程.(2)曲線的極坐標(biāo)方程為,將與曲線的極坐標(biāo)方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點(diǎn)睛】此題考查參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,利用極坐標(biāo)求點(diǎn)的軌跡方程,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)求出導(dǎo)函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時(shí)可證結(jié)論.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞減,所以,即在上恒成立因?yàn)樵谏鲜菃握{(diào)遞減的,所以,所以(2)因?yàn)椋杂桑?)知,當(dāng)時(shí),在上單調(diào)遞減所以即所以.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.解題關(guān)鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來,利用函數(shù)的特例得出不等式的證明.21、(1)見解析(2)見解析【解析】
(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴.(2).當(dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.22、(Ⅰ)直線的方程為(Ⅱ)【解析】
(1)設(shè)點(diǎn),利用中點(diǎn)坐標(biāo)公式表示點(diǎn)B,并代入橢圓方程解得,從而求出直線的方程;(2)設(shè)直線的方程為:,表示點(diǎn),然后聯(lián)立方程,利用相切得出,然后求出切點(diǎn),再設(shè)出設(shè)直線的方程,求出點(diǎn),利用兩點(diǎn)坐標(biāo),求出直線的方程,從而求出,最后利用以上已求點(diǎn)的坐標(biāo)表示面積,根據(jù)基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設(shè)點(diǎn),當(dāng)為的中點(diǎn)時(shí),可得:代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能家電產(chǎn)品研發(fā)及應(yīng)用合作協(xié)議
- 關(guān)于合同事務(wù)往來的文書范例
- 智慧校園建設(shè)及運(yùn)營合作協(xié)議
- 職工愛崗敬業(yè)責(zé)任協(xié)議書
- 股權(quán)投資合作協(xié)議書
- 建房承包施工合同
- 特殊教育機(jī)構(gòu)教育服務(wù)安全免責(zé)協(xié)議書
- 田徑體育場館租賃合同書
- 股份制組織架構(gòu)優(yōu)化方案
- 全國滇人版初中信息技術(shù)七年級(jí)上冊第三單元第14課《數(shù)據(jù)的計(jì)算-用函數(shù)計(jì)算數(shù)據(jù)》教學(xué)設(shè)計(jì)
- 第九單元跨學(xué)科實(shí)踐活動(dòng)8海洋資源的綜合利用與制鹽教學(xué)設(shè)計(jì)-2024-2025學(xué)年九年級(jí)化學(xué)人教版(2024)下冊
- 河南省鄭州市外國語學(xué)校2025屆高考?jí)狠S卷英語試卷含解析
- 2024年教育創(chuàng)新:五年級(jí)下冊美術(shù)教案新解讀
- 儲(chǔ)能電池模組PACK和系統(tǒng)集成項(xiàng)目可行性研究報(bào)告
- DB12T990-2020建筑類建設(shè)工程規(guī)劃許可證設(shè)計(jì)方案規(guī)范
- 2023-2024學(xué)年九年級(jí)三調(diào)語文試卷(含答案)
- 交通運(yùn)輸概論課件:綜合交通運(yùn)輸體系
- 醫(yī)學(xué)教材 矮身材兒童診治指南
- 醫(yī)學(xué)教程 常見急腹癥的超聲診斷課件
- ppr管材合同模板
- 航空器維修工程師考試考核試卷
評(píng)論
0/150
提交評(píng)論