版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.2.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題3.設(shè)集合,集合,則=()A. B. C. D.R4.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-35.阿波羅尼斯(約公元前262~190年)證明過(guò)這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個(gè)圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,當(dāng),,不共線時(shí),的面積的最大值是()A. B. C. D.6.函數(shù)在上的圖象大致為()A. B. C. D.7.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.8.體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.69.若雙曲線:的一條漸近線方程為,則()A. B. C. D.10.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.711.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.12.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長(zhǎng)為,則雙曲線的離心率為()A.2 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中項(xiàng)的系數(shù)是__________14.如圖,、分別是雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的兩條漸近線分別交于、兩點(diǎn),若,,則雙曲線的離心率是______.15.展開(kāi)式中的系數(shù)為_(kāi)_______.16.展開(kāi)式中的系數(shù)為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類,某校組織了高三年級(jí)學(xué)生參與了“垃圾分類,從我做起”的知識(shí)問(wèn)卷作答隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?男女總計(jì)合格不合格總計(jì)(Ⅱ)從上述樣本中,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),記來(lái)自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.82818.(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.19.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點(diǎn),求中線的長(zhǎng).20.(12分)我國(guó)在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡(jiǎn)化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過(guò)4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).列聯(lián)表如下流動(dòng)人員非流動(dòng)人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過(guò)4天辦理社保手續(xù)所需時(shí)間超過(guò)4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開(kāi)座談會(huì),其中3人要求交書(shū)面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若,求邊上的高.22.(10分)班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫(xiě)出算式即可,不必計(jì)算出結(jié)果)(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(jī)(單位:分)對(duì)應(yīng)如下表:學(xué)生序號(hào)1234567數(shù)學(xué)成績(jī)60657075858790物理成績(jī)70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績(jī)均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望;②根據(jù)上表數(shù)據(jù),求物理成績(jī)關(guān)于數(shù)學(xué)成績(jī)的線性回歸方程(系數(shù)精確到0.01);若班上某位同學(xué)的數(shù)學(xué)成績(jī)?yōu)?6分,預(yù)測(cè)該同學(xué)的物理成績(jī)?yōu)槎嗌俜郑扛剑壕€性回歸方程,其中,.7683812526
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).2、D【答案解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.3、D【答案解析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算4、D【答案解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合思想的應(yīng)用問(wèn)題.5、A【答案解析】
根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動(dòng)點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【題目詳解】如圖所示:設(shè),,,則,化簡(jiǎn)得,當(dāng)點(diǎn)到(軸)距離最大時(shí),的面積最大,∴面積的最大值是.故選:A.【答案點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.6、C【答案解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時(shí)的符號(hào),即可求解.【題目詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,排除選項(xiàng)A,B;當(dāng)時(shí),,,排除選項(xiàng)D,故選:C.【答案點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對(duì)稱性,屬于中檔題.7、C【答案解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【題目詳解】先畫(huà)出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【答案點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題8、B【答案解析】
通過(guò)列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【題目詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【答案點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過(guò)列舉的方法直觀感受,屬于基礎(chǔ)題.9、A【答案解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【題目詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【答案點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.10、B【答案解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【題目詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【答案點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.11、D【答案解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【題目詳解】解:,,即,將和代入,得出,所以.故選:D.【答案點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對(duì)于向量問(wèn)題,若已知垂直,通常可得到兩個(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡(jiǎn)、整理.12、A【答案解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長(zhǎng)為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【答案點(diǎn)睛】本題考查雙曲線離心率的問(wèn)題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、-20【答案解析】
根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【題目詳解】解:展開(kāi)式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【答案點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.14、【答案解析】
根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【題目詳解】∵,∴為中點(diǎn),,∵,∴垂直平分,∴,即,∴,,即.故答案為:【答案點(diǎn)睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、30【答案解析】
先將問(wèn)題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問(wèn)題,利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【題目詳解】由題可得:展開(kāi)式中的系數(shù)等于二項(xiàng)式展開(kāi)式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開(kāi)式的的系數(shù)為,令,得展開(kāi)式的的系數(shù)為,所以展開(kāi)式中的系數(shù),故答案為30.【答案點(diǎn)睛】本題考查利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)的問(wèn)題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.16、【答案解析】
變換,根據(jù)二項(xiàng)式定理計(jì)算得到答案.【題目詳解】的展開(kāi)式的通項(xiàng)為:,,取和,計(jì)算得到系數(shù)為:.故答案為:.【答案點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)填表見(jiàn)解析,有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān);(Ⅱ)分布列見(jiàn)解析,【答案解析】
(Ⅰ)根據(jù)莖葉圖填寫(xiě)列聯(lián)表,計(jì)算得到答案.(Ⅱ),計(jì)算,,,得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.【題目詳解】(Ⅰ)根據(jù)莖葉圖可得:男女總計(jì)合格101626不合格10414總計(jì)202040,故有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果””有關(guān).(Ⅱ)從莖葉圖可知,成績(jī)?cè)?0分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,,,,012.【答案點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.18、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【答案解析】(1)P(ξ)是“ξ個(gè)人命中,3-ξ個(gè)人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.19、(1);(2)【答案解析】
(1)通過(guò)求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【題目詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【答案點(diǎn)睛】本題主要考查了正弦定理和余弦定理在解三角形中的應(yīng)用,考查三角函數(shù)知識(shí)的運(yùn)用,屬于中檔題.20、(1)列聯(lián)表見(jiàn)解析,有;(2)分布列見(jiàn)解析,.【答案解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫(xiě)列聯(lián)表,計(jì)算出的觀測(cè)值,即可進(jìn)行判斷;(2)先計(jì)算出時(shí)間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【題目詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動(dòng)人員210人,非流動(dòng)人員90人,所以辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員列聯(lián)表如下:辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員列聯(lián)表流動(dòng)人員非流動(dòng)人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過(guò)4天453075辦理社保手續(xù)所需時(shí)間超過(guò)4天16560225總計(jì)21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).(2)根據(jù)分層抽樣可知時(shí)間在可選9人,時(shí)間在可以選3名,故,則,,,,可知分布列為0123可知.【答案點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)中的計(jì)算,以及離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.21、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《材料成形數(shù)字化設(shè)計(jì)》教學(xué)大綱
- 教案第一課神奇的貨幣
- 玉溪師范學(xué)院《數(shù)學(xué)建?!?021-2022學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《小學(xué)生學(xué)習(xí)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 冠心病課件教學(xué)
- 離職社保停交情況說(shuō)明-文書(shū)模板
- 2024年電腦刺繡機(jī)項(xiàng)目評(píng)估分析報(bào)告
- 2024年煤制烯烴項(xiàng)目綜合評(píng)估報(bào)告
- 2024年電熱帶項(xiàng)目評(píng)估分析報(bào)告
- 質(zhì)量培訓(xùn)34精研科技公司抽樣檢驗(yàn)培訓(xùn)
- 2024年度智能家居解決方案合同
- 2024-2030年中國(guó)汽車再制造行業(yè)產(chǎn)銷量預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 媒體行業(yè)內(nèi)容創(chuàng)作與傳播平臺(tái)搭建方案
- 消防安全知識(shí)
- 小學(xué)信息科技《數(shù)據(jù)與編碼-探索生活中的“編碼”》教學(xué)設(shè)計(jì)
- 多樣化人才引進(jìn)與培養(yǎng)管理制度
- 幼兒園實(shí)習(xí)生總結(jié)會(huì)方案
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會(huì)考試題庫(kù)
- 2024新人教版七年級(jí)上冊(cè)英語(yǔ)期中作文預(yù)測(cè)及范文
- 攜程在線能力測(cè)評(píng)真題
- 小學(xué)道德與法治《中華民族一家親》完整版課件部編版
評(píng)論
0/150
提交評(píng)論